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We investigate the nonlinear Ramsey interferometry of a
bosonic Josephson junction coupled to an optical cavity by
applying two identical pumping field pulses separated by a
holding field in the time domain. When the holding field is
absent, we show that the atomic Ramsey fringes are sensitive
to both the cavity-pump detuning and the initial state, and
their periods can encode the information on both the atom-
field coupling and the atom-atom interaction. For a weak
holding field, we find that the fringes characterized by the
oscillation of the intra-cavity photon number can completely
reflect the frequency information of the atomic interference
due to the weak atom-cavity coupling. This finding allows a
nondestructive observation of the atomic Ramsey fringes via
the cavity transmission spectra. © 2017 Optical Society of
America

OCIS codes: (020.1475) Bose-Einstein condensates; (120.3180)

Interferometry; (130.4310) Nonlinear.
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The Ramsey interferometry [1] is equivalent to the famous
double-slit interference in the time domain, which forms a
cornerstone of the interferometry in both optics and quantum
mechanics. Indeed, the collisional interaction in dilute ultra-
cold gases plays an important role in both the dynamics of
Bose-Einstein condensates (BECs) and the formation of mol-
ecules [2]. Based on the Ramsey interferometry method, the
s-wave scattering lengths in a two-component BEC [3] have
been measured, and a magnetic tensor gradiometer by inter-
ferometrically measuring the relative phase between two spa-
tially separated BECs has been realized [4]. In particular,
taking advantage of the pairwise scattering interaction in a
BEC, a two-mode BEC of N atoms has been used to imple-
ment a nonlinear Ramsey interferometer [5] whose detection
uncertainty scales better than the optimal 1∕N Heisenberg
scaling of linear interferometry [6].

In ultracold atomic gases, the nonlinearity stems from
atom-atom interactions, treated by mean-field approximation

(MFA). Such interactions cause an effect such as self-trapping
of the atoms in a double-well (DW) potential [7]. The system
of a BEC in a DW potential is a good candidate for realizing
analogs of a bosonic Josephson junction (BJJ) [8]. Recently, the
great achievements in manipulating ultracold atoms in an op-
tical cavity open a new avenue of studying the dynamics in
quantum many-body systems [9]. Moreover, there have been
great advances in controlling and probing the cold atoms in
both an optical lattice [10] and an optical lattice in a cavity
[11–13]. The strong atom-cavity coupling has been realized in
experiment by using an atomic BEC [14,15]. An ultracold
atomic ensemble interacting with the high-finesse cavity modes
is a typical system of cavity quantum electrodynamics that
provides an ideal platform for exploring exotic many-body
quantum effects [16–23], which has witnessed a significant
development [24,25] in both quantum optics and cold atom
physics.

In this Letter, to preciselymeasure the BJJ in an optical cavity,
we construct a nonlinear Ramsey interferometer by applying a
sequence of two identical pumping field pulses to a system that
consists of an atomic BEC trapped in a DW potential. Both
wells are coupled to a single-mode optical cavity with frequency
ωc , which is pumped by an external coherent field at frequency
ωp (see Fig. 1). We consider the dispersive-interaction regime
where the pump is weak and the detuning is large and, thus,
the excited state of the atoms can be adiabatically eliminated.
We employ the theoretical model given in Ref. [26], which
was based on both two-mode approximation [27] and MFA.
The dynamics of the system is governed by the equations

dz
d t

� −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sin ϕ; (1)

dϕ
d t

� rz � zffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p cos ϕ� δU 0

2Ω
jα�z; t�j2; (2)

where the dimensionless variables z and ϕ denote the atomic
population imbalance and the relative phase between the
two traps, respectively. The dimensionless parameter r ≡
NU∕�2Ω� > 0 measures the interaction strength (U denotes
the repulsive interaction strength between a pair of atoms in
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the same trap) against the tunneling strength (Ω is the tunneling
matrix element between the two atomic modes) with N being
the total number of atoms. The time has been rescaled in units of
the Rabi oscillation time 1∕�2Ω�, i.e., 2Ωt → t. The dimen-
sionless parameter δ reflects the coupling difference between
the two atomic modes and the cavity mode [28]. The parameter
U 0 represents the effective atom-photon coupling strength at an
antinode. The average photon number,

jα�z; t�j2 � A�t�2
�z − B�2 � C2 ; (3)

implies that the cavity field always follows the dynamics of
the condensate adiabatically [29]. The parameters A�t� �
η�t�∕�δU 0N∕2� (η�t� is the pumping field strength), B �
Δ∕�δU 0N∕2� (Δ denotes the cavity-pump detuning), andC �
κ∕�δU 0N∕2� (κ is the cavity-leakage rate) can be understand as
the reduced pumping strength, reduced detuning, and reduced
loss rate, respectively. TheMFA allows us to study the dynamics
in the Josephson regime [30], which is characterized
by 1∕N ≪ U∕Ω ≪ N.

Note that the variables z and ϕ form a pair of conjugate
variables, and the corresponding Hamiltonian H � H �z;ϕ; t�
can be written as

H � 1

2
rz2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cos ϕ� Ã�t�

C
arctan

�
z − B
C

�
; (4)

where Ã�t� � δU 0A2�t�∕�2Ω�. It should be mentioned that
the first two terms in Eq. (4) are the energy of a bare BJJ
[7], and the last term describes a cavity-field-induced asymme-
try of the BJJ. In this Letter, we assume that the pumping
strength η�t� varies in time and, thus, the Hamiltonian is
explicitly time-dependent. For convenience, we adapt a two-
pulse Ramsey scheme

Ã�t� �

8>><
>>:

Ãh � Ã0 sin
2�ωt�; 0 ≤ t ≤ T ;

Ãh; T < t < t1; t > t2;

Ãh � Ã0 sin
2�ω�t − t1��; t1 ≤ t ≤ t2;

(5)

with t1 � T � th and t2 � 2T � th. In this scheme, there
are two identical pumping field pulses of the length T � π∕ω,
with a holding time of th between them. In our weak coupling
case, the strength of the holding field Ãh is very small,
i.e., Ãh ≪ Ã0.

To begin our numerical experiments, initially, we prepare
the system in the state �z�t � 0�;ϕ�t � 0�� � �z0;ϕ0�, and

then evolve it for a time duration t2; finally, we measure the
atomic population imbalance between the two traps, i.e.,
z�t2�, which is our effective output. Varying the holding time
th and repeating the above procedure, we can obtain the two-
pulse Ramsey fringes in the time domain. In this Letter, we set
the parameters as [26] Ã0 � 0.02, ω � 0.5, C � 0.07, and
r � 3. With the help of the fourth–fifth order Runge–Kutta
algorithm with an adaptive step, we solve the coupled
Eqs. (1) and (2). For different detuning Δ and initial states with
Ãh � 0, we obtain the Ramsey fringes characterized by the os-
cillation of z�t2� with th (in units of 1∕�2Ω� ), as shown in
Fig. 2. The main features of the exotic Ramsey fringes demon-
strated in Fig. 2 include (1) most of the fringes are different
from the standard Ramsey fringes of sinusoidal or cosinoidal
form; (2) the period of the atomic fringes is very sensitive to
the initial state; and (3) the visibility of the fringes is non-zero
which is a link to the tunneling parameter between the two
wells. In addition, we see that the visibility strongly depends on
the initial state for the cases z0 ≃�1 [see Figs. 2(a) and 2(c)];
the visibility is much lower than that for the case z0 � �0.5
[see Figs. 2(b) and 2(d)].

In contrast to both the shape and the visibility of the fringes,
the period of the fringes is more crucial in practice. For exam-
ple, in the experiment for measuring the binding energy of the
molecular state in BEC, it turned out that the period of the
fringes is accurately determined by the Feshbach molecular en-
ergy in the holding time [31]. Subsequently, we make a theo-
retical analysis on the period properties of the fringes, illustrated
in Fig. 2. For a given detuning, we extract the period of the
fringes by employing the fast Fourier transformation (FFT)
technique. For each initial state, we apply the FFT to six fringes
(with different Δ) and demonstrate the corresponding periods
(marked by solid squares) in Fig. 3.

Now we understand the above exotic numerical results
through some analytical deduction. To this end, we need
to know the role of the first pumping pulse played in the
dynamical evolution. In our calculations, T � π∕ω � 2π is
of the same order of the intrinsic timescale for the atomic
tunneling, i.e., 2π∕Ω � 4π. With the emergence of the

Fig. 1. Schematic of the system. A DW potential loaded with ultra-
cold atoms is coupled to an optical cavity that accommodated two
wells. The cavity is pumped by an external coherent field, and the
signal leaking out of the cavity is measured to infer the key features
of the atomic system.

Fig. 2. Atomic Ramsey fringes in the time domain for different
initial states. (a) �z0;ϕ0� ≃ �−1; 0�, (b) �z0;ϕ0� � �−0.5; 0�,
(c) �z0;ϕ0� ≃ �1; 0�, and (d) �z0;ϕ0� � �0.5; 0�. The degree of color
indicates z�t2�. The parameters are Ã0 � 0.02, Ãh � 0, ω � 0.5,
C � 0.07, and r � 3.
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atom-cavity-field coupling, from the standpoint of the atoms,
the coupling makes the DW potential asymmetric and further
modifies the atomic tunneling dynamics. Seen by the cavity
field, the atoms have distinct back-action on the light field,
i.e., the coupling can shift the cavity resonance frequency
and, hence, can modify the field intensity [see Eq. (3)]. For
the general case, including both the atom-atom interaction
and the atom-field coupling, the time-dependent system (4)
is no longer analytically solvable. Our simulations with differ-
ent initial states and various detuning parameters for the atomic
population imbalance z�T � and the energy of the systemH �T �
(when the first pumping pulse turns off ) are displayed in
Figs. 4(a) and 4(b), respectively. We find that both the initial
state and the detuning can affect the dynamics and the energy
of the system significantly.

Compared with the dynamics during the first-pulse dura-
tion, the dynamics during the holding time becomes simple
due to the uncoupling (i.e., Ãh � 0) of the cavity field from

the BJJ. When t ∈ �T ; t1�, the system is autonomous and
the Hamiltonian is conserved. The trajectory of the system
in the phase space (plane) follows the manifold (line) of con-
stant energy. Thus, qualitatively speaking, the dynamics of the
system is to a great extent determined by the structure of
trajectory. The trajectories of the BJJ are often periodic orbits
with cyclic lines in the phase space. This type of motion is the
so-called Rabi oscillation (the oscillation of z ) of the BJJ. The
period of the Rabi oscillation can be evaluated by taking advan-
tage of the conservation of the energy (4) (during the time th)
whose value is H �T �, which is

TR �
I ���� ∂ϕ∂H

����dz � 2

Z
zmax

zmin

F�z�dz; (6)

with

F�z� �
2
4 ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�rz2 − 2H �T ��2

4�1 − z2�

s 3
5−1

; (7)

where zmax and zmin correspond to the maximum and the
minimum of the reachable atomic population imbalance z�t�
during the holding time, respectively. They are determined by
r2
4 z

4��1− rH �T ��z2�H �T �2−1�0. When H �T � ∈ �−1; 1�,
we have z� � �G��z� with G��z� �

ffiffi
2

p
r �H �T �r − 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1–2H �T �r � r2
p

�1∕2, and �zmax; zmin� � �z�; z−�. When
H �T � ∈ �1; 1�r2

2r �, we get z�1 � �G��z�, z�2 � �G−�z�,
and �zmax; zmin� � �max�z−1; z−2�;min�z−1; z−2�� or �max�z�1 ; z�2 �;
min�z�1 ; z�2 ��. Equation (6) is our main result in this Letter.
The periods calculated from this equation are demonstrated
in Fig. 3, which are in good agreement with the numerical
results based on the FFT analysis.

A simple physical understanding of this perfect consistence
can be given in terms of the Rabi orbits in the phase space. As
mentioned before, during the holding time, the energy (4) is
time-independent and, thus, we can view the system as a closed
system. For a given initial state, the system evolves with
time following a periodic motion and constructs a cycle trajec-
tory in the phase space. This closed Rabi orbit is often an
ellipse or a circle, which is equivalent with the motion of a
one-dimensional harmonic oscillator. For this closed system,
the energy is preserved, i.e., H �t� � H �T � � constant when
t ∈ �T ; t1�. The period of this cycle motion is determined by
T R � 2π∕ωR � 2πI∕H �T �, where ωR is the corresponding
frequency of the Rabi oscillation; the action 2πI equals the
phase-space area enclosed by the closed orbit. To see the con-
nection between the period of the Rabi oscillation and the
period of the Ramsey fringes, we obtain the Ramsey trajectories
denoted by the evolution of �z�t2�;ϕ�t2�� in the phase space
[see Figs. 5(a′) and 5(b′)]. As a result, we find that the phase-
space areas enclosed by the two typical closed orbits (the
Ramsey trajectory and the Rabi orbit) are identical.

It is worth emphasizing that the cavity field not only can
play with the atoms interactively and modify their dynamics
effectively, but also can carry with it information on the atomic
population imbalance as it leaks out of the cavity. In Figs. 5(a)
and 5(b), we show the time evolution of the atomic population
imbalance and the number of intra-cavity photons (which is
proportional to the cavity output), with the latter calculated
from the former by using Eq. (3). We see that, in our
weak atom–cavity-field coupling case, i.e., Ãh � 0.0001, the

Fig. 3. Periods of the Ramsey fringes as a function of the
detuning Δ (in units of δU 0N∕2 ) for different initial states.
(a) �z0;ϕ0� ≃ �−1; 0�, (b) �z0;ϕ0� � �−0.5; 0�, (c) �z0;ϕ0� ≃ �1; 0�,
and (d) �z0;ϕ0� � �0.5; 0�. The solid lines show our theoretical
prediction given by Eq. (6), and the scatter squares denote the numeri-
cal results obtained from the FFT analysis.

Fig. 4. (a) Atomic population imbalance z�T � and (b) classical en-
ergy of the system H �T � as a function of the detuning Δ (in units of
δU 0N∕2) for different initial states. The same parameters are used as
in Fig. 2.
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Ramsey fringes recorded by the oscillation of the photon num-
ber can completely reflect the frequency information of the
atomic interference, as demonstrated in Fig. 5(b). Moreover,
two important properties are illustrated as well. (1) The hold-
ing-field-induced modification of the period (or the frequency)
of the Ramsey fringes strongly depends on the initial state. For
z0 � −0.5, no modification is found, as shown in Fig. 5(a),
while a small modification for z0 ≃ −1 is seen in Fig. 5(b).
(2) The amplitude of the Ramsey fringes characterized by
the photon number can be largely enhanced by changing
the initial atomic population imbalance between the two traps.
Actually, when z0 ≃ B, the maximum of the photon number
will occur [see Eq. (3)]. For B � −0.8, the value of jα�t2�j2
for z0 ≃ −1 shown in Fig. 5(b) is more than 10 times that
for z0 � −0.5 displayed in Fig. 5(a). However, for the two dif-
ferent initial states, we find that the introduction of the weak
atom-field coupling during the holding time cannot change the
shape of the Ramsey fringes. Indeed, the fringes can encode the
information on the atom-atom interaction [see Eq. (6)]. For
the short pulses (e.g., ω > 10), the period of the fringes
monotonously increases with the atom-atom interaction when
r < 2.02 and monotonously decreases with the atom-atom
interaction when r > 2.02.

We have thoroughly investigated the nonlinear Ramsey
interferometry in a coupled BJJ-cavity system and shown that
both the atomic interaction and the cavity field play a signifi-
cant role in the dynamical process. It is found that the Ramsey
fringes are very sensitive to the initial state, and the frequency of
the fringes can encode the information on both the atom-atom
interaction and the atom–cavity-field coupling. In particular,
for a weak holding field, it is found that the Ramsey fringes
recorded by the oscillation of the photon number can com-
pletely reflect the frequency information of the atomic interfer-
ence due to the weak atom–cavity-field coupling, which allows
a nondestructive observation of the atomic Ramsey fringes via

the transmission spectra of the cavity. For the system with more
than two sites, the tunneling between different sites at least
qualitatively causes a decay of the fringe visibility. This
Letter may suggest the potential applications to both accurately
calibrate the atomic parameters in trapped quantum gases and
precisely manipulate the cold atoms in a full optical way.
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Fig. 5. Atomic population imbalance (blue solid lines) z�t2� and
intra-cavity photon number (magenta dotted lines) jα�t2�j2 versus
the holding time th with B � −0.8 and Ãh � 0.0001. The initial states
are (a)[(a′)] �z0;ϕ0� � �−0.5; 0� and (b)[(b′)] �z0;ϕ0� ≃ �−1; 0�. (a′)
and (b′) demonstrate the Rabi orbits (red dashed lines) during the hold-
ing time th and the trajectories corresponding to Ramsey fringes (olive
solid lines). The same parameters are used as in Fig. 2. The black
dashed-dotted lines (almost overlapping with the blue solid lines)
denote the case Ãh � 0 for comparison.
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