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Abstract By representing a quantum state and its evolution with the Majorana stars on the Bloch sphere, the
Majorana representation provides us an intuitive way to study a physical system with SU(2) symmetry. In this work,
based on coherent states, we propose a method to establish the generalization of Majorana representation for a general
symmetry. By choosing a generalized coherent state as a reference state, we give a more general Majorana representation
for both finite and infinite systems and the corresponding star equations are given. Using this method, we study the
squeezed vacuum states for three different symmetries, Heisenberg–Weyl, SU(2) and SU(1,1), and express the effect of
squeezing parameter on the distribution of stars. Furthermore, we also study the dynamical evolution of stars for an
initial coherent state driven by a nonlinear Hamiltonian, and find that at a special time point, the stars are distributed
on two orthogonal large circles.
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1 Introduction
The Majorana representation (MR), which provides

an intuitive picture to study a physical system with a
high dimensional projective Hilbert space,[1] has attracted
revived attention in recent years. Despite being intro-
duced about 80 years ago, this representation, which en-
dows quantum state with visualization, has become an
efficient tool to study the symmetric related feature of
quantum system, such as spinor boson gases,[2−7] mul-
tilevel qubits,[8] and Lipkin–Meshkov–Glick model,[9−10]

since it naturally provides an intuitive way to study the
geometrical perspectives of these systems, e.g., geometric
phase,[11−16] and entanglement.[17−22]

As we know, a two-level pure state can be described by
a point on the Bloch sphere, and its evolution is perfectly
represented by the trajectory of the point on the sphere.
However, it seems hard to extend this geometric interpre-
tation to a higher dimensional quantum states, since it is
difficult to visualize the trace in high dimensional space.
Faced with this, the early ingenious work of Majorana told
us that we can study the problem from a different perspec-
tive: including more points on the two-dimensional Bloch
sphere instead picturing one single point on a high dimen-
sional geometric structure. In MR, one can describe a
spin-J state intuitively by 2J points on the Bloch sphere.
These points are called Majorana stars of the state. There-

fore, the physics information of a spin state, such as dy-
namic evolution, geometric phase, mutiparticle entangle-
ment, can be represented by these stars.

However, this elegant geometric representation can
only be used to study a pure spin state which has SU(2)
symmetry. With the increasing attention of MR, how to
extend this representation to mixed states or pure states
with other symmetries becomes a fascinating problem.
Recently, Giraud et al. proposed a generalization to ar-
bitrary spin-j mixed state of the MR in terms of tensors
that share the most important properties of Bloch vectors
based on covariant matrices introduced by Weinberg.[23]

Moreover, for any n-dimensional pure state, the parame-
terization process in Majorana representation can also be
borrowed to define n−1 stars on the Bloch sphere, but the
symmetry features carried by the state might not be prop-
erly presented. For example, the geometric phase of the
states and their topological properties can also be studied
by the stars,[16] but the entanglement of a multiparticle
pure state can not be determined exclusively due to the ar-
bitrary of base vector. This arbitrary can be fixed by cer-
tain symmetry, such as SU(2) symmetry corresponding to
the symmetric qubit state.[12−13] Therefore, it is a natural
question to ask whether a similar geometric representation
can be found for a general pure quantum state without
loss of symmetry information. Inspired by the relation
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between Majorana representation and Schwinger boson,
we find the answer lies with the generators of the SU(2).
For a particular symmetry described by a Lie group, sim-
ilar with SU(2), its generators can always correspond to a
set of ladder and number operators, which can determine
a parameterize way of the state as in SU(2). However,
the choice of the parameters in this way is not unique. A
reference state is needed.

In this work, we present a new extension for the MR.
Based on the definitions of generalized coherent states[24]

with the ladder and number operators, we choose the co-
herent state as a reference state and propose a procedure
of establishing representation like MR for an arbitrary
symmetry. We show that this coherent-state approach for
MR can not only be used to typical states like coherent
states and squeezed vacuum states for a particular symme-
try, such as Heisenberg–Weyl (HW), SU(2), and SU(1,1)
symmetries, but also can reproduce the change of sym-
metry in the period evolution of a quantum state. In this
respect, it provides an intuitive way to study the quantum
system which carries a particular symmetry. Furthermore,
we find that the same type of state in our coherent-state
approach for MR based on the different coherent states of
the different symmetries possess the same distribution of
the stars on the Bloch sphere.

This paper is organized as follows. In Subsec. 2.1, we
introduce the MR and the coherent state in MR. Then, by
using the coherent state and ladder operators, we estab-
lish a coherent-state approach for an arbitrary symmetry
and obtain a new representation of their states by stars on
the Bloch sphere in Subsec. 2.2. In Sec. 3 this coherent-
state approach representation is applied to three particu-
lar symmetries of Heisenberg–Weyl, SU(2), SU(1,1), and
obtain three star equations, respectively. In Sec. 4, we in-
vestigate the squeezed vacuum states in these three sym-
metries by the stars in the coherent-state approach rep-
resentation. In Sec. 5, a nonlinear system is studied to
illustrate our theory. A brief discussion and summary are
given in Sec. 6.

2 Majorana Representation and Its Cohe-
rent-State Approach

2.1 Majorana Representation

We first introduce the MR which was developed for
spins.[1] A generic spin-j state

|ψ⟩(j) =
j∑

m=−j

Cm|j,m⟩ =
2j∑

n=0

Cn−j |n⟩j

=

2j∑
k=0

Cj−k|2j − k⟩j , (1)

where |n⟩j ≡ |j,−j+n⟩, k = 2j−n, and n, k are integers.
It is instructive to write the above state under the two-
boson representation. Formally, the spin basis state |j,m⟩
corresponds to a two mode boson state |j + m, j − m⟩.

Consequently, in the form of boson creation operators â†

and b̂†, the spin state |ψ⟩(j) can be written as

|ψ⟩(j) =
j∑

m=−j

Cma
†(j+m)b†(j−m)√

(j +m)!(j −m)!
|00⟩

=

2j∑
n=0

Cn−ja
†nb†(2j−n)√

n!(2j − n)!
|00⟩

=

2j∑
k=0

Cj−ka
†(2j−k)b†k√

k!(2j − k)!
|00⟩ . (2)

Then, we meet a homogeneous polynomial of degree
2j

f(x, y) =

2j∑
k=0

Cj−kx
(2j−k)yk√

k!(2j − k)!
. (3)

This can be further written as

f(x, y) = (−y)2j
2j∑
k=0

(−1)kCj−kz
(2j−k)√

k!(2j − k)!
, (4)

where z = −x/y. Then, by solving the following star
equation

2j∑
k=0

(−1)kCj−k√
(2j − k)! k!

z2j−k = 0 , (5)

we may find 2j roots z1, z2, . . . , zn. Finally, the polyno-
mial (4) can be written as a factorized form

f(x, y) = (−y)2j
2j∏
k=1

(z − zk) =

2j∏
k=1

(x+ zky) . (6)

Using Eq. (6), the state |ψ⟩(j) (2) becomes

|ψ⟩(j) =
2j∏
k=1

(a† + zkb
†)|00⟩ . (7)

There are 2j complex numbers zk determined by Eq. (5).
These numbers completely describe the state and can be
geometrically described by 2j points on a plane or on a
unit sphere via relation

zk = tan
θk
2

e iϕk , θk ∈ [0, π] , ϕk ∈ [0, 2π] , (8)

where θk and ϕk are the spherical coordinates. Therefore,
any spin state |ψ⟩(j) and its evolution can be depicted by
these points which are called Majorana stars. Substituting
Eq. (8) into (7) leads to

|ψ⟩(j) =
( 1

cos θk

)2j
2j∏
k=1

(cos θka
† + sin θk e

iϕkb†)|00⟩

=
( 1

cos θk

)2j
2j∏
k=1

c†k|00⟩ , (9)

where

c†k = cos θka
† + sin θk e

iϕkb† (10)

are also bosonic creation operators. This equation is an-
other form of the spin state.
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Now, as an example, we consider a spin coherent state
(SCS) defined by[25−26]

|η⟩j = (1 + |η|2)−j

2j∑
n=0

(
2j

n

)1/2

ηn|n⟩j , (11)

where η is a complex number. Comparing Eqs. (1) and
(11), one finds

Cj−k = (1 + |η|2)−j

(
2j

k

)1/2

η2j−k. (12)

For finding the Majorana stars, substituting the above
equation into Eq. (5) leads to

(−1)2j(1 + |η|2)−j
√

(2j)!(1− ηz)2j = 0 . (13)

Thus, there are 2j-fold roots z = η−1 and 2j stars coin-
cide in one single point on the Bloch sphere. There is still
one point even in the case of j → ∞. So, we can choose
the coherent state as a reference state when we intend
to generalize the MR to more general systems including
other finite or infinite systems. Next, based on the coher-
ent state defined on a Lie group, we use the coherent-state
approach to define new MR.

2.2 Coherent-State Approach

For the system with the symmetry of a Lie group G,
there exists a method to construct the coherent states.[24]

The generators Li of group G satisfy the commutation
relation

[Li, Lj ] = CijkLk , (14)

with structure constants Cijk. We may construct the lad-
der operators A and A† by the linear combination of {Lj}
and define number operator N via a certain Lλ which
satisfy

A|m⟩ =
√
εm|m− 1⟩, A†|m⟩ = √

εm+1|m+ 1⟩ ,
N|m⟩ = m|m⟩ , (15)

where ε1, ε2, . . . , εm is a sequence of positive numbers.
Using the creation operator, a generic state |ψ⟩ =∑

m Cm|m⟩ can be factorized as

|ψ⟩ =
∑
m

CmA
†m

√
ϵm!

|0⟩ ∼
∏
m

(A† + λm)|0⟩ , (16)

where ϵm! = ϵ1ϵ2 · · · ϵm and the roots are determined via∑
m

Cmz
m

√
ϵm!

= 0 . (17)

Interestingly, if we decompose the complex numbers
λm as λm = tan(θm/2) e

iϕm , we can represent state |ψ⟩
as points (θm, ϕm) on the Bloch sphere as the stars in
MR. However, the choice of ladder operators in Eq. (15)
is not unique. Since, we can add any coefficient which is
the function of m, the new sequence of ϵ′m will still hold
Eq. (15). This uncertainty of ladder operator seemingly
become an obstacle to establish a symmetric-related rep-
resentation. At this moment, we look back at the last
subsection, the answer emerges naturally. The interesting
representation that all the stars of the coherent state in
MR accumulating on one point on the Bloch sphere pro-
vides us a natural reference to fix the choice of the ladder

operator A†. Therefore, we call this new representation
as the coherent-state approach (CSA) for MR.

The coherent state can be defined as[24]

|ψC⟩ = D(τ )|ψ0⟩ , (18)

where |ψ0⟩ = |0⟩ is a fixed state which can be chosen as the
eigenstate of some generator L̂λ and the symmetry-related
operator D(τ ) is constructed by all the ladder operators
A and A†. Since D(τ ) is a unitary operator, it can be
written as

D(τ ) = exp
(
− i

n∑
j ̸=λ

τjLj

)
∼ exp(αA† − α∗A) . (19)

Note that, ladder operators A and A† are constructed by
{Lj}. Therefore, we may have several pairs of ladder op-
erators. For simplicity, we only consider one pair of ladder
operators in this paper.

Technically, we can establish this new representation
in three steps:

(i) Constructing the ladder operator A† and the coher-
ent state |α⟩ of the system with a particular symmetry.
The operator A† can be constructed by generators of the
corresponding Lie group.[24] Suppose using the commuta-
tion relation between the ladder operators A and A†, the
coherent state can be defined as

|α⟩ ∼ eαA
†
|0⟩ . (20)

(ii) Using the coherent state as a reference to fix the
ladder operator and Majorana points. To represent the
coherent state as one point on the Bloch sphere, we define
a nonlinear creation operator Ã† = f(N)A† to change the
form of Eq. (20) into

|α⟩ ∼
n∑

l=0

αlÃ†l

l!(n− l)!)
|0⟩ ∼ (Ã† + α−1)n|0⟩ . (21)

Correspondingly, Eq. (16) becomes

|ψ⟩ = (1/N)
n∏

m=1

(Ã† + λm)|0⟩ . (22)

Define the new complex coefficients as λm =
tan(θm/2) e

iϕm , we have n Majorana stars on the unit
sphere. With this choice, one can guarantee that the
stars for the coherent state coincide on one point, just like
the case of spins.

(iii) Establishing the equation for Majorana stars. If
we meet an infinite system, the cutoff can be made as the
all excitations for a physical state cannot be infinite. With
this procedure, we next apply this CSA to some physical
systems with particular symmetries.

3 Applications for Several Symmetries

3.1 Spin State for SU(2) Symmetry

First, we need to guarantee our CSA can reproduce the
MR for SU(2) symmetry. The spin operators Jx, Jy, Jz as
the generators of SU(2) have the commutation relations

[Jz, J±] = ±J±, [J+, J−] = 2Jz , (23)
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where J± = Jx ± iJy are ladder operators. We have the
following relations

J+|n⟩j =
√
(n+ 1)(2j − n)|n+ 1⟩j ,

Nj |n⟩j = (Jz + j)|n⟩j = n|n⟩j . (24)

Then, we arrive at

|n⟩j =

√
(2j − n)!

n!(2j)!
Jn
+|0⟩j . (25)

The coherent state for spins is well-defined and the related
displacement operator Dj(τ) can be defined as

Dj(τ) = eτJ+−τ∗J− = eηJ+ eη̄Jz e−η∗J− , (26)

with η = tan |τ | e iarg(τ) and η̄ = ln(1 + |τ |2). The SCS is
defined as

|η⟩j = Dj(τ)|0⟩j ∼ eηJ+ |0⟩j . (27)

From Eq. (25), the general form of the spin state |ψ⟩(j)
(1) becomes

|ψ⟩(j) =
2j∑

n=0

Cn|n⟩j =
2j∑

n=0

√
(2j − n)!

n!(2j)!
CnJ

n
+|0⟩j . (28)

One may define the stars from the above form via the
following star equation

2j∑
n=0

√
(2j − n)!

n!(2j)!
(−1)nCnz

n = 0 . (29)

However, this equation is different from the star equation
for spins (5). In other words, if we solve this equation for
SCS, there will be 2j different stars and cannot guarantee
all stars coincide at a single point.

We solve this puzzle by introducing the nonlinear cre-
ation operator as

J̃+ = f(Nj)J+ =
1

2j −Nj + 1
J+ , (30)

which has the property

J̃n
+ =

( n−1∏
k=0

f(Nj − k)
)
Jn
+ . (31)

Using the above equation and Eq. (25), let J̃n
+ act on state

|0⟩j , we obtain

|n⟩j =

√
(2j)!

n!(2j − n)!
J̃n
+|0⟩j . (32)

Then, the general state can be written as

|ψ⟩(j) =
2j∑

n=0

(
2j

n

)1/2

Cn(−1)n(−J̃+)n|0⟩j . (33)

From the above equation, finally, we obtain the star equa-
tion by considering −J̃+ as a number

2j∑
n=0

(
2j

n

)1/2

(−1)nCnz
n = 0 . (34)

This equation is a little different but essentially has the
same roots of the star equation (5). Obviously, from this
form, all stars for the SCS (11) coincide. Next, using
this coherent-state approach, we generalize MR from fi-
nite SU(2) systems to systems with infinite dimensions.

3.2 Single Mode Boson State for HW Symmetry

In a similar way with the above discussion, we consider
the bosonic single-mode system which has HW symmetry.
Its generators are the boson creation operator a† and anni-
hilation operator a and the unity operator I, which satisfy
the commutation relations

[a, a†] = I, [a, I] = [a†, I] = 0 . (35)

The ladder operator a† and bosonic number operator
N = a†a for the Fock basis {|m⟩} satisfy

a†|n⟩ =
√
n+ 1|n+ 1⟩, N|n⟩ = n|n⟩ . (36)

Thus, a single mode boson state takes the form

|ψ⟩ =
∞∑

n=0

Cn|n⟩ =
∞∑

n=0

Cna
†n

√
n!

|0⟩ . (37)

The coherent state can be obtained by action of the
displacement operator,

Da(α) = eαa
†−α∗a = eαa

†
e−|α|2/2 e−α∗a, (38)

on the vacuum state. Then, the coherent state is given by

|αa⟩ = e−|α|2/2 eαa
†
|0⟩ = e−|α|2/2

∞∑
n=0

αn

√
n!
|n⟩ . (39)

Different with the situation of SU(2), if we want to
establish a geometric representation by stars, we need to
truncate the infinite to a finite number Nc (since the ex-
citations can not be infinite for a real physical state, the
truncation is very physically reasonable, and the choice of
Nc will be shown in Fig. 2). Define a nonlinear creation
operator as

ã† =
1

Nc −N + 1
a†, (40)

which obeys

ã†n =
( n−1∏

m=0

1

Nc −N +m+ 1

)
a†n. (41)

Acting on the vacuum state leads to

ã†n|0⟩ = (Nc − n)!
√
n!

Nc!
|n⟩ . (42)

Thus, we obtain

|n⟩ = Nc!

(Nc − n)!
√
n!
ã†n|0⟩ . (43)

Finally, we can write the general state (37) in terms of
−ã† as

|ψ⟩ =
Nc∑
n=0

Nc!

(Nc − n)!
√
n!
(−1)nCn(−ã†)n|0⟩ . (44)

The star equation for the boson is given by
Nc∑
n=0

Nc!

(Nc − n)!
√
n!
(−1)nCnz

n = 0 . (45)

This star equation is applicable to all pure states of a
boson. Obviously, for the coherent state, all the stars co-
incide.

3.3 State for SU(1,1) Symmetry

Another useful symmetry is SU(1,1) symmetry, which
has been widely applied to study spin squeezing in quan-
tum metrology[27−28] and some non-conservative physical
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systems.[29−32] Similar with group SU(2), group SU(1,1)
also has three generators K1,K2 and K3 which satisfy

[K0,K±] = ±K±, [K−,K+] = 2K0 . (46)

The irreducible representation is

K+|k, n⟩ =
√
(n+ 1)(2k + n)|k, n+ 1⟩ ,

K0|k, n⟩ = (k + n)|k, n⟩ , (47)

with K± = (K1 ± iK2). It is easy to verify that the
quadratic operator

C2 = K2
0 −K2

1 −K2
2 = k(k − 1) (48)

is invariant (the Casimir operator) with real number k
(Bargmann index). Basis vectors |k,m⟩ marked by an in-
teger m are the eigenvectors of the operator K0. So, one
can define a number operator Nk = K0−k, which satisfies

Nk|n⟩k = n|n⟩k , (49)

where |n⟩k ≡ |k, n⟩.
From Eq. (47), we have

|n⟩k =

√
Γ(2k)

n!Γ(2k + n)
Kn

+|0⟩k . (50)

Therefore, the general state |ψ⟩(k) =
∑∞

n=0 Cn|n⟩k takes
the form

|ψ⟩(k) =
∞∑

n=0

√
Γ(2k)

n!Γ(2k + n)
CnK

n
+|0⟩k . (51)

The displacement operator for SU(1,1) system is defined
by

Dk(τ) = eτK+−τ∗K−) = eβK+ eηKZ eβ
∗K− , (52)

with β = tanh |τ | e iarg(τ) and η = − ln(1 − |τ |2). The
coherent state is defined as[24]

|β⟩k ∼ eβK+ |0⟩k =

∞∑
n=0

√
Γ(2k + n)

n!Γ(2k)
βn|n⟩k . (53)

Again we truncate the upper to a finite number Nc

and define the nonlinear operator

K̃+ =
1

Nc −Nk + 1
K+ , (54)

which obeys

K̃n
+ =

( n−1∏
m=0

1

Nc −Nk +m+ 1

)
Kn

+ . (55)

Acting on the vacuum state leads to

K̃n
+|0⟩ =

(Nc − n)!

Nc!

√
n!Γ(2k + n)

Γ(2k)
|n⟩k . (56)

Thus, we obtain

|n⟩k =
Nc!

(Nc − n)!

√
Γ(2k)

n!Γ(2k + n)
K̃n

+|0⟩k . (57)

From the above equation, the general SU(1,1) pure state
is written as

|ψ⟩(k) =
Nc∑
n=0

Cn(−1)n
Nc!

(Nc − n)!

√
Γ(2k)

n!Γ(2k + n)
(−K̃)n+|0⟩k .

(58)
The third star equation is then obtained as

Nc∑
n=0

Cn(−1)n
Nc!

(Nc − n)!

√
Γ(2k)

n!Γ(2k + n)
zn = 0 . (59)

Substituting the coefficients of the coherent state (53) into
the above equation, one finds again all the stars coincide.
Thus, we have obtained three star equations, respectively
for SU(2), HW, and SU(1,1) systems. Next, we apply
these equations to real quantum states.

4 Squeezed Vacuum State in CSA
So far, we have presented how to establish the CSA

for some kinds of symmetries. This coherent-state based
method provides us a geometric tool to study properties
of quantum states. We now consider a class of quantum
state, i.e., squeezed states. First, we consider the typical
single-mode squeezed vacuum (SMSV) state

|ξa⟩ = (1− |ξa|2)1/4 e(ξ/2)a
†2
|0⟩

= (1− |ξa|2)1/4
∞∑

n=0

ξn
√
(2n)!

2nn!
|2n⟩ , (60)

where ξa is a complex number which satisfies |ξ| < 1. So,
the coefficient C2n is given by

C2n = (1− |ξa|2)1/4ξn
√
(2n)!

2nn!
, (61)

and C2n+1 = 0. Substituting the above equation into the
star equation for bosonic system (45), we arrive at the star
equation for the SMSV

[Nc/2]∑
n=0

ξnz2n

(Nc − 2n)!n!2n
=

[Nc/2]∑
n=0

(−1)nz̃n

(Nc − 2n)!n!
= 0 , (62)

where z̃ = −z2ξ/2. By solving the star equation, one finds
[Nc/2] positive real roots z̃k (which can be proved by us-
ing Descartes’ rule of signs) and then we have Nc (even)
roots given by

zk = ±i
√
2z̃k/ξ . (63)

So, the roots appear in a pairwise way with phases
3π/2 − Arg(ξ)/2 and π/2 − Arg(ξ)/2 because only even
states are involved. For odd Nc, there exists an extra root
zk = ∞ corresponding to a star located on the south pole.

Similarly, one spin squeezed state for SU(2) symmetry
is defined as[33−34]

|ξJ⟩ ∼ e(ξj/4j)j
2
+ |0⟩ ∼

[j]∑
n=0

( ξj
4j

)n
√

(2n)!(2j)!

n!
√
(2j − 2n)!

× |2n⟩ . (64)

One can also define the squeezed state for SU(1,1) system
as

|ξk⟩ ∼ e(ξk/2)K
2
+ |0⟩ ∼

∞∑
n=0

(ξk
2

)n
√
(2n)!Γ(2k + 2n)

n!
√
Γ(2k)

× |2n⟩ . (65)

Substituting the coefficients in Eqs. (64) and (65) into
Eqs. (34) and (59), respectively, we obtain two star equa-
tions for the two squeezed states as

[j]∑
n=0

(−1)nx̃n

(2j − 2n)!n!
= 0 ,

[Nc/2]∑
n=0

(−1)nỹn

(Nc − 2n)!n!
= 0 , (66)

where x̃ = −ξjz2/4j, ỹ = −ξkz2/2. Thus, we see that for
the three squeezed states, the three star equations are es-
sentially identical. If we choose other squeezed states, the
star equations are different.
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Fig. 1 Bloch representation of CSA for the squeezed vacuum state with Nc = 20 and (a) ξ = 0, (b) ξ = 0.001, (c)
ξ = 0.01, (d) ξ = 0.9.

Fig. 2 Bloch representation of CSA for the SMSV states with ξ = 0.2 and different truncated numbers (a) Nc = 10,
(b) Nc = 20, (c) Nc = 30, and (d) Nc = 50.

As the above three star equations become same for
the states we have chosen, we here only consider bosonic
squeezed vacuum state. For even Nc, we have Nc/2 pairs
of roots with phases 3π/2−Arg(ξ)/2 and π/2−Arg(ξ)/2
and thus the stars are all distributed on a big circle of
the Bloch sphere and symmetric about z axial, as shown
in Fig. 1. As the squeezing parameter |ξ| increases, the
distribution of the stars varies from one overlapped points
for the vacuum state |0⟩ (see Fig. 1(a)) to disperse points
(see Figs. 1(b) and 1(c)), and finally accumulate towards
the north pole of the Bloch sphere (see Fig. 1(d)). Thus,
the increase of squeezing is intuitively represented by the
moving of stars from south pole to north pole on the Bloch
sphere. Furthermore, we study the influence of the trun-
cation on the distribution of star. We also show the CSA
representation of the SMSV state with different truncation
in Fig. 2. When the truncation is larger enough (Nc ≥ 20),
the distributions of stars are similar as Nc increases.

5 Example: Quantum Evolution in CSA Rep-
resentation
To describe the quantum dynamics in CSA represen-

tation, we now consider a nonlinear Hamiltonian of the
form[35]

H = ωNF +ΩN 2
F , (67)

where ω is the energy-level splitting for the linear part
of the Hamiltonian, N 2

F is a nonlinear operator (such
as (a†a)2 for HW which can be derived by a Kerr
nonlinearity,[36]) and Ω is the strength of the nonlinear

term. This model can be used to describe all of the three
symmetries HW, SU(2) and SU(1,1) with NF = N = a†a,
NF = Nj = j+JZ and NF = Nk = −k+K0, respectively.
They all hold the relation N|m⟩ = m|0⟩. Taking ΩN 2 as
the interaction part, the time evolution operator in the
interaction picture takes the form e−iΩtN 2

. If we choose
the initial state as the coherent state

|α⟩ ∼
NF∑
n=0

gF (n)α
n

√
n!

|n⟩ , (68)

where |α⟩ corresponds to |αa⟩, |αj⟩, |αk⟩ for HW, SU(2)
and SU(1,1), respectively, and the parameters are defined
accordingly

ga(n) = 1, Nc → ∞ ,

gJ(n) =

√
(2j)!

(2j − 2n)!
, NJ = 2j ,

gK(n) =

√
Γ(2k + n)

Γ(2k)
, Nc → ∞ . (69)

Therefore, the state in time t can be written as

|Ψ(t)⟩ = e−iΩtN 2
F |α⟩ ∼

NF∑
n=0

gF (n)α
n e−iΩn2t

√
n!

|n⟩ . (70)

Substituting Eq. (70) into Eqs. (34), (45), and (59)
with the definition in Eq. (69), we have three equations of
stars for HW, SU(2) and SU(1,1), respectively

Nc∑
n=0

(−1)nαn e−iΩn2tzn

(Nc − n)!n!
= 0 ,
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2j∑
n=0

(−1)nαn e−iΩn2txn

(2j − n)!n!
= 0 ,

Nc∑
n=0

(−1)nαn e−iΩn2tyn

(Nc − n)!n!
= 0 . (71)

These three equations are identical whenNC = 2j. There-
fore, the distribution of the stars representing state |Ψ(t)⟩
in CSA representation for the three different symmetries
are same.

It is easy to find that this state is periodic with a pe-
riod 2π/Ω since |α, t+ 2π/Ω⟩ = |α, t⟩. In one period, the
state |Ψ(t)⟩ is very interesting at some special time points
and corresponds to some special distributions of stars by
solving Eq. (71). At t = 0, the state is initially on the co-
herent state |α⟩ with all of the stars overlap on one point
(as shown on the sphere at the original point in Fig. 3);
when the state evolves to time point t = π/(4Ω), the state
becomes the superposition of four different coherent states
as[35]∣∣∣Ψ(

t =
π

4Ω

)⟩
=

1

2
[ e−iπ/4|α⟩+ |iα⟩

− e−iπ/4| − α⟩+ | − iα⟩] . (72)

By Eqs. (39) and (45), the star equation for this su-
perposition of four coherent states becomes

[(Nc−1)/2]∑
n=0

e−iπ/4

(
Nc

2n+ 1

)
u2n+1 +

[Nc/2]∑
n=0

(
Nc

2n

)
× (−1)nu2n = 0 , (73)

with u ≡ αz. When Nc is very large, by numerical simu-
lation, we find that the arguments of the roots un of this
equation can only take four phases π/4, 3π/4, 5π/4, 7π/4.
Therefore, all the stars will be distributed on two orthog-

onal circles as shown on the sphere at the point π/4 in
Fig. 3.

As the state arrives at t = π/(2Ω), the state turns into
a cat state[35]∣∣∣Ψ(

t =
π

2Ω

)⟩
=

1√
2
[ e−iπ/4|α⟩+ e iπ/4| − α⟩] . (74)

Using Eqs. (39) and (45), the star equation for this super-
position of two coherent states becomes

e−iπ/4(1− αz)Nc + e iπ/4(1 + αz)Nc = 0 . (75)

Therefore, we have

(1 + αz)Nc

(1− αz)Nc
≡ λNc = e iπ/2. (76)

Define λ = A e iϕ, we have ANc = 1 and e iNcϕ = e iπ/2,
which implies A = 1 and ϕ = (2nπ + π/2)/Nc with
n = 0, 1, . . . , Nc − 1. Thus, the n-th root of z satisfies
the relation

1 + αzn
1− αzn

= exp
[ i(4n+ 1)π

2Nc

]
. (77)

Therefore, the roots of Eq. (75) can be derived as

zn =
1

α

e i(4n+1)π/2 − 1

e i(4n+1)π/2 + 1
=

i

α
tan

[ (4n+ 1)π

4Nc

]
. (78)

By the definition zn = tan(θn/2) e
iϕn , the spherical coor-

dinates of the stars can be given by

θn = 2arctan
( 1

α

∣∣∣ tan [ (4n+ 1)π

4Nc

]∣∣∣) ,
ϕn =

{
π/2− arg(α), n ≤ [(Nc − 1)/2] ,

ϕn = 3π/2− arg(α), n > [(Nc − 1)/2] .
(79)

The numerical results are shown on the sphere at the point
π/2 in Fig. 3, and the stars are distributed on one large
circle.

Fig. 3 Bloch representation of CSA for the states |α, 0⟩, |α, π/4Ω⟩, |α, π/2Ω⟩, |α, π/Ω⟩ with HW, SU(2) and SU(1,1)
symmetry, the parameters are chosen as α = 2, n = 50.

When the state evolves a half period, the state reverts
to a single coherent state as∣∣∣Ψ(

t =
π

Ω

)⟩
= | − α⟩ , (80)

with n coincided stars on the Bloch sphere (as shown on
the sphere at the point π in Fig. 3). Thus, the period evo-
lution of a quantum state can be perfectly reflected by the

period changes of stars on the Bloch sphere. Moreover,
if 2π is dividable by Ωt, the stars for the state at this
moment are distributed on several circles and the state
can be written as the superposition of several coherent
states. Furthermore, according to Eq. (71), these inter-
esting phenomena can be observed in all of these three
different symmetries.
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6 Conclusions
The Majorana representation provides us a geometric

tool to study the quantum states with SU(2) symmetry
and their evolutions. Our study here is to show how can
we extend this elegant method to the system with both
finite and infinite dimensions. We found that the key of
the answer is the coherent state. The definitions of co-
herent states in different kinds of symmetries inspired us
a method to build the representation by ladder and num-
ber operators and provide a reference state to our repre-
sentation. By study three different symmetries, we show

this coherent-state approach of Majorana representation

can well characterize squeezed states for different symme-

tries and the dynamical evolution of a quantum state. In

this work, we only consider the situation with one pair

of ladder operators. However, if there are more pairs of

ladder operators, such as SU(3) symmetry, we may need

a more complex geometric structure (like three correlated

spheres), this will be discussed in our future work. Accord-

ingly, there are also more symmetries like SU(N) (N > 2)

need to be further studied with the CSA representation.
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