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The Exact Curve Equation for 
Majorana Stars
Fei Yao1, Dechao Li2, Haodi Liu3, Libin Fu4 & Xiaoguang Wang1

Majorana stars are visual representation for a quantum pure state. For some states, the corresponding 
majorana stars are located on one curve on the Block sphere. However, it is lack of exact curve 
equations for them. To find the exact equations, we consider a superposition of two bosonic coherent 
states with an arbitrary relative phase. We analytically give the curve equation and find that the curve 
always goes through the North pole on the Block sphere. Furthermore, for the superpositions of SU(1,1) 
coherent states, we find the same curve equation.

The Majorana representation (MR), in which a pure state of a spin- j system1,2 can be precisely described as the 
trajectory of j2  stars on a unit sphere, was proposed by Majorana in 19323. Over the past decades, the MR has been 
proved to be a valuable method for many applications in quantum entanglement4–10, Bose-Einstein conden-
sates12–16,25, and geometric phase10,17–20. In refs 10,20, the Berry phase was studied by the stars and their loops on the 
Bloch sphere. With the solid angles of the Majorana star loops, an intuitive relation between the Berry phase and 
Majorana stars’ trajectories on the Bloch sphere was given and it was shown that the Berry phase is determined by 
both the solid angles subtended by every Majorana star’s evolution path and the correlations between the stars20. 
Quantum entanglement were investigated by distributions and motions of these stars on the Bloch sphere20. It is 
found that the distances between stars are also found to be a tool for measuring and classifying the multiparticle 
entanglement of a symmetric multiqubit pure state.

The MR was also used to study a multi-band topological systems21. They find a geometric interpretation of the 
topological phases of inversion-symmetric polymerized models by mapping the Bloch states of the topological 
system to majorana stars. It is interesting to find that the stars displays different topological structures for topo-
logically different phases and the topological structure is closely related to the parity of the system. In addition, it 
was found that the MR provides a very interesting and intuitive way to understand the nonlinear Laudau-Zener 
tunneling22 and the breakdown of adiabaticity is related to some stars never reaching the South pole of the Bloch 
sphere.

As an efficient tool to study spin system23–25, the MR has certain limitations. It can only be used to study a pure 
spin- j state in finite dimensional Hilbert space. To solve these problems, a lot of researches26–30 concentrate on 
extending the previous representation. In paper30, for instance, Giraud et al. extended the MR from pure spin 
states to arbitrary mixed states. Based on Weinberg’s covariant matrices31, they proposed a tensorial representa-
tion of the mixed states and expressed any a spin- j density matrix as a linear combination of matrices with con-
venient properties.

On the other hand, based on the coherent-state approach, the MR was extended from the finite dimensional to 
infinite dimensional cases32. By choosing the coherent states as reference states, the corresponding star equations 
for locating stars were given for both bosonic and SU(1,1) systems. All the stars for coherent states coincide on 
one point on the Bloch sphere32. Thus, using this coherent-state approach, we can study star representations of 
many quantum states including both finite and infinite-dimensional systems.

In general, it is hard to give the positions of Majorana stars analytically, and we always locate them numeri-
cally. The curve equations for these stars are even harder to be given. Fortunately, we find an exact curve equation 
for Majorana stars for a superpositon of two bosonic coherent states (STCS) with an arbitrary relative phase. For 
the superpositions of SU(1,1) coherent states, we find the same curve equation.

In this paper, we give the star equation for the STCS of the bosonic system and deduce the corresponding 
curve equation for stars on the Bloch sphere, and then explore the curve properties on the Block sphere by the 
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theoretic analysis. Moreover, we discuss the curve properties on the Block sphere with the numerical calculation. 
Finally, we give our conclusions and some further discussions.

Results
Star equation for the STCS and its solution. To find exact curve equation for Majorana stars, we con-
sider the following state, i.e., the STCS,

ϕ α β= + ϑe , (1)i 1

where ϑ1 is the phase difference between two coherent states α  and β , and the coherent state is given by
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where α is a complex number and | 〉k  is Fock state. The star equation for the STCS is
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where z is the root of this star equation. There are N  roots = −z n N, 0 , 1, 2 1n  mapping to the stars on the 
Block sphere. The equations for the coordinates of the stars can be given as
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These are the coordinates for all stars on the Block sphere, the detailed calculation can be found in Methods.
On the coordinates for the stars, we now give the further discussions. Firstly, we consider a simple case of 
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α
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2 . So, the Eqs (5) and (6) can be reduced to
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From above two equations, we know that θn and φn has no relation with ϑ1, moreover φn is a constant if the total 
value of θα and θβ is fixed. In this case, the stars’ distributions are independent of the relative phase ϑ1 between the 
two component states. A more particular case is the situation of α β= . the Eqs (9) and (10) are further reduced to

θ
α

=
| |

2 arctan 1 ,
(11)n

φ θ= − .α (12)n

This is what we expected, namely, all the coherent states correspond to one point on the Bloch sphere.

Exact curve equation for stars. Above we have discussed the case of α β| | = | |. Now, we discuss the case of 
α β| | ≠ | |. Based on the Eq. (7), note that ≈R 1 when → ∞N . Then, the general spherical coordinates of the stars 
making up one curve can be written as
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These two equations indicate that there is always exist a certain value for γn, and this certain value always leads 
to θ = 0n . It means that the curve of STCS must through the North Pole. This characteristic of the curve will be 
displayed in figures later. Otherwise, from Eq. (14), we do know the curve which is composed of stars will rotate 
θα about Z-axis when θ ≠α 0.

To further obtain the exact curve equation, we set πϑ = 0,2 . For ϑ = 02 , from the Eqs (5) and (6), we can 
obtain
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Because Eqs (15) and (16) are the functions on γn, we can obtain the relation between θtan2
2
n  and φtan2  by 

eliminating γn. Finally, we obtain
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Equation (18) is the exact equation of the curve. It is only dependent on the polar and azimuth angles and 
from this equation, all the stars can be determined on the Bloch sphere.

The above we have given the curve equation for N , which takes any positive integer. For coherent states, 
→ ∞N , based on the Eq. (7), we obtain ≈R 1, since α β| | − | |2 2 is a finite value. In this case, the Eq. (18) becomes 

a simpler form
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where λ, θα and α| | are the constants. This is a curve equation for the superposition of two coherent states. This 
curve includes infinite stars θ φ( , )n n , n = 1, 2, 3, …., ∞ on the Bloch sphere, and we will give the corresponding 
figures in the next section. Based on the Eq. (21), we know that the curve on the Bloch sphere has no relation with 
N  and the phase difference ϑ1 between α  and β . It means that, when the value of N  or ϑ1 change, the curve’s shape 
and location on the Bloch sphere are invariant. Furthermore, combining the Eq. (21) and λ = β

α
| |
| |

, we can obtain
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This is the curve equation in the case of no argument difference between α and β. From this equation, we surely 
know the curve is invariable as long as α β| | + | |( )2 takes a certain value whatever the values α and β respectively 
take. Meanwhile, because of φ θ+ ≤αcos ( ) 12 , this curve is located on the northern hemisphere and through the 
North Pole in case of α β| | + | | ≥( ) 42 . Moreover, the greater the values of α β| | + | |( )2 are, the curve get closer to 
the North Pole. When α β| | + | | ≤( ) 42 , the curve runs through the northern and southern hemisphere.

So far, we have discussed the properties of the curve in the case of no argument difference between α and β. 
Similarly, the properties of the curve for πϑ =2  can be discussed. Using similar derivation, we obtain the curve 
equation
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where x, y are the same as Eqs (19) and (20). Moreover, the corresponding curve equation of → ∞N  can be 
given as

θ φ θ
α β







 =

+
| | − | |

.αtan
2

4 cos ( )
( ) (24)

2
2

2

By now, we have derived the curve equation in the case of πϑ = 0,2  for the STCS. But for other values of ϑ2, it is 
hard to deduce an exact expression of the curve’s equation. Meanwhile, we have to emphasize that a random curve 
given on the bloch sphere can not be regarded as the expression of the STCS.

Numerical results of the curve equation. We have presented analytical result for the STCS. In this sec-
tion, we will further give the numerical results about the STCS in the case of no argument difference (ϑ = 02 ) 
between parameters α and β.

In Fig. 1, we give the two-dimensional images about θ and φ with different α| | and β| |. From the Fig. 1, we know 
that the curve of STCS through the Northern Pole. And the curve is only located on the northern hemisphere in 
case of α β+ ≥ 42 , but for α β+ < 42 , the curve through the northern and southern hemisphere. In addi-
tion, comparing Fig. 1-(b) with Fig. 1-(c), the shape and location of the curve is invariant as long as α β+ 2 fixed. 
Hence the numerical results mentioned above are consistent with the theory in Eq. (22).

In Fig. 2, we find that the location of the curve rotate around the northern pole with the increase of θα and θβ 
while the shape and size is invariant. This numerical result is consistent with the theoretical result in Eq. (22).

In this section, we’ve discussed the impacts on the curve from parameters α, β, θα and θβ with the aid of 
numerical calculation. And the numerical result is exactly consistent with theoretical result.

Methods
For a single-mode pure bosonic state
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Figure 1. Two-dimensional images for the relation of radius θ and angle φ in Eq. (22) with θ θ= =α β 0, (a) 
α| | = 0, β| | = .0 5, (b) α| | = .0 1, β| | = .1 9, (c) α| | = .0 5, β| | = .1 5, (d) α| | = .0 5, β| | = 3.

Figure 2. Two-dimensional images for the relation of radius θ and angle ϕ in Eq. (22) with α| | = .0 5, 
β| | = .1 5, (a) θ θ= =α β 0, (b) θ θ π= = .α β 0 5 , (c) θ θ π= = .α β 0 75 , (d) θ θ π= =α β .
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we introduce the state which orthogonal to the state ψ , i.e.

ψ〈 | 〉 =z 0 (26)

where
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where N  is a sufficient large limited cutoff number. Substituting the Eqs (25) and (27) into the Eq. (26), we can 
obtain the star equation for locating stars as below (The another method of looking for the star equation can be 
found in32.)
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Substituting the above equation into Eq. (28) leads to the following equation for locating stars,
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and z is the root of this star equation. After simplifying, we find out the n-th root of z satisfying the relation
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α
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β

α
 is a real number, and ϑ2 is the argument difference between two coherent parameters α 

and β. By now, we have given the roots of star equation for STCS with H-W symmetry. And these roots zn can be 
mapped to the stars on Block sphere via relation

θ
θ π φ π= ∈ ∈φz etan

2
, [0, ], [0, 2 ], (36)n

n i
n nn

where θn and φn are the spherical coordinates. The spherical coordinates can be calculated as Eqs (5) and (6).

Discussions
In conclusion, for giving curve equation of Majorana stars, we have examined the STCS. For this state, we have 
obtained exact equations of curve for stars in the case of no argument difference between two parameters of 
coherent states α, β, or with augment difference π. These analytic results agree with numerical calculations. 
Meanwhile, we have shown that the curves through the North Pole. We have further examined the superposition 
states of two SU(1,1) coherent states, and found the same curve equations. The details are presented in the 
Appendix. In our investigations, two arbitrary coherent states are superimposed together with equal probability. 
For the STCS with different probability amplitudes, our method can directly apply.
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Appendix: The curve equation for the STCS of SU(1,1) system
Based on ref.32, we know that for the state
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By similar calculations, we derive the solution of Eq. (40) as follow
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Meanwhile, zm can be mapped to the stars on Block sphere via relation in Eq. (36). So, based on the Eqs (36) 
and (42), we obtain
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These are the coordinates for all stars on the Block sphere. Next, in the same way, we derive the curve equation 
in θ π= 0,m
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This is the curve equation for the STCS of SU(1,1) system. Comparing these two equations with the Eqs (22) 
and (24) for the STCS of bosonic system, we find that they have the same equation form.
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