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Alternative fidelity measure between two states of anN-state quantum system
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An alternative fidelity measure between two states of a qunit, anN-state quantum system, is proposed. It has
a hyperbolic geometric interpretation, and it reduces to the Bures fidelity in the special case whenN52.
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I. INTRODUCTION AND MOTIVATION

The concept of fidelity is important in communicatio
theory. In particular, the Bures fidelity is a most importa
distance measure for quantum computation and quantum
formation@1–7#. For any pair of density operatorsr1 andr2,
the Bures fidelity

F~r1 ,r2!5@ trAAr1r2Ar1#2 ~1!

quantifies the extent to whichr1 andr2 can be distinguished
from one another. The Bures fidelity has useful propert
Thus, for instance, 0<F(r1 ,r2)<1, and F(r1 ,r2)51 if
and only if r15r2, and for any unitary transformatio
U,F(Ur1U†,Ur2U†)5F(r1 ,r2).

A qubit is a two-state quantum system represented by
232 density matrix

r~n!5 1
2 ~11sW •n!,unu<1, ~2!

where 1 is the unit matrix,sW 5(s1 ,s2 ,s3) are the Pauli
matrices in vector notation, andn is the three-dimensiona
Bloch vector. Equality,unu51, in Eq. ~2! corresponds to a
pure state, otherwise a mixed state. Let

r15 1
2 ~11sW •u!,

r25 1
2 ~11sW •v! ~3!

be two states of a qubit. Then

F~r1 ,r2!5 1
2 @11u•v1A12uuu2A12uvu2#. ~4!

Following @8#, we introduce the hyperbolic parameterfu ,
calledrapidity, representing the Bloch vector by the equati

u5û tanhfu , ~5!
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whereû5u/uuu is a unit vector. Clearly,fu50 corresponds
to uuu50, andfu→` corresponds touuu51. As shown in
@8#, the density matrixr(u) is related to the Lorentz boos
matrix L(u),

L~u!5expS wu

2
sW •ûD51coshS wu

2 D1sW •û sinhS wu

2 D , ~6!

by the equation

r~u!5
L~u!

2 coshfu
, fu5wu/2. ~7!

Clearly, r(u) and L(u) are in one-to-one correspondenc
Interestingly, the vectoru in the former is the Bloch vector o
quantum mechanics, while the vectoru in the latter is the
generic relativistically admissible velocity. Relativistical
admissible velocities, in turn, give rise to the Thomas p
cession@9#, and are regulated by the hyperbolic geometry
Bolyai and Lobachevski as explained in@10# and @11#.

Viewing the Bloch vectoru in Eq. ~4! as a relativistically
admissible velocity, the identity

F~r1 ,r2!5
cosh~fw/2!

coshfu

cosh~fw/2!

coshfv
~8!

was established in Ref.@8#. Here w is the Einstein sumw
5u% v, % being the Einstein addition operation betwe
relativistically admissible velocities. It is given by the equ
tion

w5u% v5
1

11
u•v

c2

Fu1
1

gu
v1

1

c2

gu

11gu
~u•v!uG , ~9!

where gu51/A12uuu2/c25coshfu is the Lorentz factor,
and wherec is the vacuum speed of light. The positive co
stantc is normalized toc51, whenu is viewed as a Bloch
vector. The rapidityfw satisfies the cosine law of hyperbol
geometry,

coshfw5coshfucoshfv~11û• v̂tanhfutanhfv!,
~10!

a result already known to Silberstein in 1914@12#.
©2002 The American Physical Society04-1
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The hyperbolic angles$fu ,fv ,fw% form a hyperbolic tri-
angle~see Fig. 1, whereD is the midpoint of the sideBC).
Interestingly, the Bures fidelity for a qubit appears in Eq.~8!
as the product of two similar factors. Furthermore, it follow
from Eq. ~8! that F(r1 ,r2) is symmetric in its arguments
and is invariant under unitary transformations on the s
space.

A remarkable property that Eq.~4! exhibits is that
F(r1 ,r2) is solely dependent on the magnitudes ofu andv,
and the angle between them~that is, û• v̂). However, this
remarkable property is lost when one calculates the Bu
fidelity for an N-state quantum system in the case ofN>3;
as a result, the simple geometric interpretation for the qu
tum fidelity as shown in Eq.~8! and in Fig. 1 is no longer
valid. For instance, we take two states of a qutrit as

r15
1

3
~11A3lW •u!

5
1

3 S 11A3u31u8 0 0

0 12A3u31u8 0

0 0 122u8

D ,

r25
1

3
~11A3lW •v!

5
1

3 S 11A3v31v8 0 0

0 12A3v31v8 0

0 0 122v8

D ,

~11!

wherelW 5(l1 ,l2 , . . . ,l8) are the eight Hermitian genera
tors of SU~3!, u5(0,0,u3 ,0, . . . ,0,u8) and v
5(0,0,v3 ,0, . . . ,0,v8). Then, the Bures fidelity for a qutri
is given by the equation

F~r1 ,r2!5 1
9 @A~11A3u31u8!~11A3v31v8!

1A~12A3u31u8!~12A3v31v8!

1A~122u8!~122v8!#2, ~12!

FIG. 1. The hyperbolic triangleABC. Its three sides areuABu
5fu5tanh21uuu, uACu5fv5tanh21uvu, and uBCu5fw

5tanh21uwu. D is the midpoint of the sideBC. The angle between

AB andAC is equal top2arccos(û• v̂).
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which is not solely dependent onuuu,uvu, andû• v̂.
We therefore propose in the following theorem an alt

native definition for quantum fidelity,F(r1 ,r2), following
which the fidelity measure for any two states of a qunit@13#
has the geometric interpretation suggested by Eq.~8!.

II. FORMALISM

Theorem. Let

r~n!5
1

N S 11AN~N21!

2
lW •nD ~13!

be the density matrix of a qunit, where1 is the N3N unit
matrix, lW 5(l1 ,l2 , . . . ,lN221) are the generators o
SU(N), andn is the (N221)-dimensional Bloch vector. Fur
thermore, letr15r(u) and r25r(v) be two states of a
qunit. Then the fidelity measure

F~r1 ,r2!5
12r

2
1

11r

2
@ tr~r1r2!

1A12tr~r1
2!A12tr~r2

2!#, ~14!

wherer 51/(N21), can be written as

F~r1 ,r2!5
cosh~fw/2!

coshfu

cosh~fw/2!

coshfv
, ~15!

wherew5u% v.
Proof. From the well-known trace relations

tr~l i !50, tr~l il j !52d i j ~16!

for the generators of SU(N) we have

tr~r1r2!5
11~N21!u•v

N
,

tr~r1
2!5

11~N21!uuu2

N
,

tr~r2
2!5

11~N21!uvu2

N
. ~17!

Substituting these equations into Eq.~14!, noting r 51/(N
21), we obtain Eq.~15!, and the proof is complete.

III. CONCLUSION AND DISCUSSION

We have proposed an alternative fidelity measure betw
two states of a qunit. For anyN-state quantum system, th
fidelity measure possesses the geometric interpretation
Eq. ~15! uncovers. The following observations may be note

~a! Geometric interpretation of the parameterr in Eq.
~14!: It is well known that a density matrix must satisfy thre
conditions.~i! Trace unity trr51; ~ii ! Hermiticity; and~iii !
positivity, i.e., all eigenvalues ofr are non-negative. Indeed
the operatorr(n) in Eq. ~13! satisfies the first two condi
4-2
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tions. However, not every vectorn,unu<1, allows r(n) to
satisfy the positivity condition. Assuming thatr(u) is a den-
sity matrix satisfying the above three conditions, ifr(v) is a
density matrix, one must have the constraint tr(r1r2)>0,
that is2u•v<r . For instance, letr(û)5(11A3lW •û)/3 be a
pure state of a qutrit, whereû is a unit vector~e.g., û
5(0,0,A3/2,0, . . . ,0,1/2). Then,r(2û) is not a density ma-
trix since it violates the positivity condition. The operat
r(2u)5(12A3uuulW •û)/3 is a density operator ifuuu<1/2
~Note thatr 51/2 for N53). Thus, if unu<r ,r(n) is always
a density matrix regardless of the direction ofn. Geometri-
cally, r is the radius of acharacteristic ballinside the Bloch
.
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-

.
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.

05430
sphere such that any point located either on the surface o
ball or inside the ball corresponds to a physical state o
qunit.

~b! For N52, we haver 51, which implies that thechar-
acteristic ball is identical to the usual Bloch sphere of
qubit. Therefore one obtainsF(r1 ,r2)5F(r1 ,r2), that is, in
the case of a qubit the alternative fidelity measure is ident
to the Bures fidelity.

~c! The radiusr decreases whenN increases,r→0 when
N→`. For Bloch vectorsu and v satisfying 0<uuu,uvu<r ,
one can obtain the usualtrace distance d5uu2vu/2 from the
distance measure@1# d2(r1 ,r2)52@12AF(r1 ,r2)# as a
first approximation.
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163, 229 ~1992!; 179, 226 ~1993!.

@2# R. Jozsa, J. Mod. Opt.41, 2315~1994!; B. Schumacher, Phys
Rev. A51, 2738~1995!.

@3# M.B. Ruskai, Rev. Math. Phys.6, 1147 ~1994!; H. Barnum,
C.M. Caves, C.A. Fuchs, R. Jozsa, and B. Schumacher, P
Rev. Lett.76, 2818~1996!; C. A. Fuchs, Ph.D. thesis, Univer
sity of New Mexico, 1996; e-print quant-ph/9601020.

@4# V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys
Rev. Lett.78, 2275~1997!.

@5# J. Twamley, J. Phys. A29, 3723~1996!; H. Scutaru,ibid. 31,
3659~1998!; X.B. Wang, C.H. Oh, and L.C. Kwek, Phys. Re
A 58, 4186 ~1998!; X.B. Wang, L.C. Kwek, and C.H. Oh, J
Phys. A33, 4925 ~2000!; L.C. Kwek, C.H. Oh, X.B. Wang,
and Y. Yeo, Phys. Rev. A62, 052313~2000!; P.B. Slater, Phys.
Lett. A 247, 1 ~1998!; J. Dittmann, J. Phys. A32, 2663~1999!;
J. Dittmann and A. Uhlmann, J. Math. Phys.40, 3246~1999!.

@6# B.W. Schumacher, Phys. Rev. A54, 2614~1996!; E. Knill and
R. Laflamme,ibid. 55, 900 ~1997!; H. Barnum, E. Knill, and
M.A. Nielsen, e-print quant-ph/9809010.
s.

@7# M. A. Nielsen and I. L. Chuang,Quantum Computation and
Quantum Information~Cambridge University Press, Cam
bridge, 2000!.

@8# J.-L. Chen, L. Fu, A.A. Ungar, and X.-G. Zhao, Phys. Rev.
65, 024303~2002!.

@9# J.-L. Chen and M.-L. Ge, J. Geom. Phys.25, 341 ~1998!; P.K.
Aravind, Am. J. Phys.65, 634 ~1997!; A.A. Ungar, Found.
Phys.27, 881 ~1997!; J.-L. Chen and A.A. Ungar,ibid. 31,
1611 ~2001!; ibid. 32, 531 ~2002!.

@10# Abraham A. Ungar,Beyond the Einstein Addition Law and it
Gyroscopic Thomas Precession: The Theory of Gyrogro
and Gyrovector Spaces~Kluwer Academic, Dordrecht, 2001!.

@11# A. A. Ungar, inThe János Bolyai Memorial Volume, edited by
A. Prekopa, E. Kiss, Gy. Staar, and J. Szenthe~Vince, Budap-
est, 2002!.

@12# L. Silberstein,The Theory of Relativity~MacMillan, London,
1914!, p. 169.

@13# D. Kaszlikowski, P. Gnacin´ski, M. Żukowski, W. Miklasze-
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