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Alternative fidelity measure between two states of aniN-state quantum system
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An alternative fidelity measure between two states of a qunily-atate quantum system, is proposed. It has
a hyperbolic geometric interpretation, and it reduces to the Bures fidelity in the special cas&lwien
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. INTRODUCTION AND MOTIVATION whereU=u/|u| is a unit vector. Clearlyg,=0 corresponds
to |u|=0, and ¢,—= corresponds tdu|=1. As shown in

The concept of fidelity is important in communication [8], the density matrixp(u) is related to the Lorentz boost
theory. In particular, the Bures fidelity is a most importantmatrix L (u),

distance measure for quantum computation and quantum in-
formation[1—-7]. For any pair of density operatops andp,, _ Pu- ~| @y
the Bures fidelity L(u)=exp 5o-uj=1cosh -

I pP1,P2)= \ \/ by the equa io
( 1 2) [tr pP1P2 p1]2 (1) yt tion
L(u)

quantifies the extent to whighy, andp, can be distinguished plu)= 2 coshe,’ Pu= /2. ™
from one another. The Bures fidelity has useful properties.

Thus, for instance, €F(p;,p,)<1, andF(p;,p,)=1 if  Clearly, p(u) and L(u) are in one-to-one correspondence.
and only if p;=p,, and for any unitary transformation Interestingly, the vectan in the former is the Bloch vector of

+5-l]sinl-<%), 6)

U,F(Up,UT,Up,UN)=F(p1,p,). guantum mechanics, while the vectorin the latter is the
A qubit is a two-state quantum system represented by thgeneric relativistically admissible velocity. Relativistically
2X 2 density matrix admissible velocities, in turn, give rise to the Thomas pre-

cessior[ 9], and are regulated by the hyperbolic geometry of
Bolyai and Lobachevski as explained[ib0] and[11].

Viewing the Bloch vectou in Eq. (4) as a relativistically
admissible velocity, the identity

p(n)=%(1+0-n),|n|<1, (2)

where 1 is the unit matrix,(;':(a'l,O'z,(Tg) are the Pauli

matrices in vector notation, anul is the three-dimensional F( ):COSK $wl2) costip,/2)
Bloch vector. Equality|n|=1, in Eq. (2) corresponds to a P1:P2 coshg,, coshag,
pure state, otherwise a mixed state. Let

®

was established in Ref8]. Herew is the Einstein sunw
=uéev, @ being the Einstein addition operation between
relativistically admissible velocities. It is given by the equa-
tion

p1=3%(1+0-u),

p2=3(1+0-V) €
1 1 1 9,
_ W=u®v= U+—v+—
be two states of a qubit. Then uvl % et

1+ —
F(p1,p2)=3[1+U-v+y1—|ul*V1-|v[*]. 4
where y,=1/\1—[u[?/c?=cosh¢, is the Lorentz factor,

2
Following[8], we introduce the hyperbolic parametgy, and wherec is the vacuum speed of light. The positive con-

calledrapidity, representing the Bloch vector by the equationstantc is normalized toc=1, whenu is viewed as a Bloch
vector. The rapidityp,, satisfies the cosine law of hyperbolic

geometry,

(u-vuf, (9

C

u=utanhg,, (5)

cosheg,,= coshe,coshe,(1+ U- vtanhgp,tanhe,),
(10)
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A which is not solely dependent dul,|v|, andu-v.
We therefore propose in the following theorem an alter-
native definition for quantum fidelity/(p4,p»), following
which the fidelity measure for any two states of a qlihg]
& 5 has the geometric interpretation suggested by(Bg.

Il. FORMALISM

IN(N—1) .

be the density matrix of a qunit, whefeis the NXN unit

Theorem Let

B ¢w D ¢w C

2 2 P(n)ZN

FIG. 1. The hyperbolic triangl&BC. Its three sides arpAB|

= ¢, =tanh Yul|, |AC|=¢,=tanh Yv|, and |BC|= ¢, =T
=tanh Yjw|. D is the midpoint of the sid8C. The angle between matrix, A=(\q,\,, ... ,Ay2-1) are the generators of
AB andAC is equal torr—arccos(- V). SU(N), andn is the (N2— 1)-dimensional Bloch vector. Fur-

. ~ thermore, letp;=p(u) and p,=p(v) be two states of a
The hyperbolic anglefpy, ¢y, ¢y} form a hyperbolic tri- - qunit. Then the fidelity measure
angle(see Fig. 1, wher® is the midpoint of the sid8C).

Interestingly, the Bures fidelity for a qubit appears in E). 1-r +r

as the product of two similar factors. Furthermore, it follows Flp1.p2)= o + T[tr(l)lpz)

from Eq. (8) that F(py,p2) is symmetric in its arguments,

and is invariant under unitary transformations on the state +V1-tr(p)V1—tr(p3)], (14)
space.

A remarkable property that Eq(4) exhibits is that wherer=1/(N—1), can be written as
F(p1,p,) is solely dependent on the magnitudesuadndyv,
and the angle between thefthat is, U-v). However, this Flpy.py)= costi¢w/2) cosi $/2) (15)
remarkable property is lost when one calculates the Bures b cosh¢,  coshg,
fidelity for an N-state quantum system in the caseNs#3;
as a result, the simple geometric interpretation for the quaniherew=uev. _
tum fidelity as shown in Eq(8) and in Fig. 1 is no longer Proof. From the well-known trace relations
valid. For instance, we take two states of a qutrit as

tr()\|)=0, tr()\|)\J):25” (16)
1 -
p1=§(1+ \/§)\-u) for the generators of SW) we have
1+(N=-21)u-v
1 1+ \/§U3+U8 0 0 tr(plpZ):Tv
= § 0 1_ \/§U3+ U8 O y
0 0 1-2ug 1+ (N—=1)Jul?
tr(pD) =~
1 -
p2=3(1+ VaR-v) . L+(N=1)|v?
tr(p3)= N (17)
1+3vz+vg 0 0
=5 0 1—\3us+ug 0 : Substituting these equations into Ed4), noting r=1/(N
0 0 1-2vg —1), we obtain Eq(15), and the proof is complete.
(11)

11l. CONCLUSION AND DISCUSSION
whereh=(\1,Az, ... \g) are the eight Hermitian genera-  \ye have proposed an alternative fidelity measure between
tors of SU3), u=(0,0u3,0,...,0ug) and V g states of a qunit. For any-state quantum system, the
=(0,0p3,0,...,0pg). Then, the Bures fidelity for a qutrit figelity measure possesses the geometric interpretation that
is given by the equation Eq. (15) uncovers. The following observations may be noted.

1 (a) Geometric interpretation of the parameterin Eq.
F(p1.p2) = $[V(L1+3ua+Ug)(1+ V3ug+us) (14): It is well known that a density matrix must satisfy three
+ (1~ 3us+ Ug) (1~ \3vs+vs) conditions.(i) Trace unity tp=1; (ii) Hermiticity; and i)
positivity, i.e., all eigenvalues gf are non-negative. Indeed,
+(1—2ug)(1—2vg) %, (120  the operatorp(n) in Eq. (13) satisfies the first two condi-
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tions. However, not every vectar,|n|<1, allows p(n) to
satisfy the positivity condition. Assuming thau) is a den-
sity matrix satisfying the above three conditionsp(f/) is a
density matrix, one must have the constrainpig,)=0,
that is—u-v<r. For instance, leb(U) = (1+ 3\ -U)/3 be a
pure state of a qutrit, wher@ is a unit vector(e.g., U
=(0,04/3/2,0 ... ,0,1/2). Thenp(— ) is not a density ma-
trix since it violates the positivity condition. The operator
p(—u)=(1—/3|u|X-0)/3 is a density operator ifu]<1/2
(Note thatr =1/2 for N=3). Thus, if|n|<r,p(n) is always
a density matrix regardless of the directionrofGeometri-
cally, r is the radius of aharacteristic ballinside the Bloch
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sphere such that any point located either on the surface of the
ball or inside the ball corresponds to a physical state of a
gunit.

(b) ForN=2, we haver =1, which implies that thehar-
acteristic ball is identical to the usual Bloch sphere of a
qubit. Therefore one obtain&(p,,p,) =F(p1,p2), thatis, in
the case of a qubit the alternative fidelity measure is identical
to the Bures fidelity.

(c) The radiusr decreases wheN increasesr —0 when
N—oo. For Bloch vectorsu andv satisfying O<|ul,|v|=<r,
one can obtain the usurhce distance & |u—v|/2 from the

distance measurgl] d%(py,p,)=2[1—VF(p1.p,)] as a
first approximation.
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