Alternative fidelity measure between two states of an N-state quantum system

Jing-Ling Chen, ${ }^{1,2, *}$ Libin Fu, ${ }^{1}$ Abraham A. Ungar, ${ }^{3, \dagger}$ and Xian-Geng Zhao ${ }^{1}$
${ }^{1}$ Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009(26), Beijing 100088, People's Republic of China
${ }^{2}$ Department of Physics, Faculty of Science, National University of Singapore, Lower Kent Ridge, Singapore 119260, Singapore
${ }^{3}$ Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105

(Received 8 November 2001; published 8 May 2002)
An alternative fidelity measure between two states of a qunit, an N-state quantum system, is proposed. It has a hyperbolic geometric interpretation, and it reduces to the Bures fidelity in the special case when $N=2$.

DOI: 10.1103/PhysRevA. 65.054304
PACS number(s): 03.67.-a, 03.65.Ta

I. INTRODUCTION AND MOTIVATION

The concept of fidelity is important in communication theory. In particular, the Bures fidelity is a most important distance measure for quantum computation and quantum information [1-7]. For any pair of density operators ρ_{1} and ρ_{2}, the Bures fidelity

$$
\begin{equation*}
F\left(\rho_{1}, \rho_{2}\right)=\left[\operatorname{tr} \sqrt{\sqrt{\rho_{1}} \rho_{2} \sqrt{\rho_{1}}}\right]^{2} \tag{1}
\end{equation*}
$$

quantifies the extent to which ρ_{1} and ρ_{2} can be distinguished from one another. The Bures fidelity has useful properties. Thus, for instance, $0 \leqslant F\left(\rho_{1}, \rho_{2}\right) \leqslant 1$, and $F\left(\rho_{1}, \rho_{2}\right)=1$ if and only if $\rho_{1}=\rho_{2}$, and for any unitary transformation $U, F\left(U \rho_{1} U^{\dagger}, U \rho_{2} U^{\dagger}\right)=F\left(\rho_{1}, \rho_{2}\right)$.

A qubit is a two-state quantum system represented by the 2×2 density matrix

$$
\begin{equation*}
\rho(\mathbf{n})=\frac{1}{2}(\mathbf{1}+\vec{\sigma} \cdot \mathbf{n}),|\mathbf{n}| \leqslant 1 \tag{2}
\end{equation*}
$$

where $\mathbf{1}$ is the unit matrix, $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices in vector notation, and \mathbf{n} is the three-dimensional Bloch vector. Equality, $|\mathbf{n}|=1$, in Eq. (2) corresponds to a pure state, otherwise a mixed state. Let

$$
\begin{align*}
& \rho_{1}=\frac{1}{2}(\mathbf{1}+\vec{\sigma} \cdot \mathbf{u}), \\
& \rho_{2}=\frac{1}{2}(\mathbf{1}+\vec{\sigma} \cdot \mathbf{v}) \tag{3}
\end{align*}
$$

be two states of a qubit. Then

$$
\begin{equation*}
F\left(\rho_{1}, \rho_{2}\right)=\frac{1}{2}\left[1+\mathbf{u} \cdot \mathbf{v}+\sqrt{1-|\mathbf{u}|^{2}} \sqrt{1-|\mathbf{v}|^{2}}\right] . \tag{4}
\end{equation*}
$$

Following [8], we introduce the hyperbolic parameter $\phi_{\mathbf{u}}$, called rapidity, representing the Bloch vector by the equation

$$
\begin{equation*}
\mathbf{u}=\hat{\mathbf{u}} \tanh \phi_{\mathbf{u}} \tag{5}
\end{equation*}
$$

[^0]where $\hat{\mathbf{u}}=\mathbf{u} /|\mathbf{u}|$ is a unit vector. Clearly, $\phi_{\mathbf{u}}=0$ corresponds to $|\mathbf{u}|=0$, and $\phi_{\mathbf{u}} \rightarrow \infty$ corresponds to $|\mathbf{u}|=1$. As shown in [8], the density matrix $\rho(\mathbf{u})$ is related to the Lorentz boost matrix $L(\mathbf{u})$,
\[

$$
\begin{equation*}
L(\mathbf{u})=\exp \left(\frac{\varphi_{\mathbf{u}}}{2} \vec{\sigma} \cdot \hat{\mathbf{u}}\right)=\mathbf{1} \cosh \left(\frac{\varphi_{\mathbf{u}}}{2}\right)+\vec{\sigma} \cdot \hat{\mathbf{u}} \sinh \left(\frac{\varphi_{\mathbf{u}}}{2}\right) \tag{6}
\end{equation*}
$$

\]

by the equation

$$
\begin{equation*}
\rho(\mathbf{u})=\frac{L(\mathbf{u})}{2 \cosh \phi_{\mathbf{u}}}, \quad \phi_{\mathbf{u}}=\varphi_{\mathbf{u}} / 2 \tag{7}
\end{equation*}
$$

Clearly, $\rho(\mathbf{u})$ and $L(\mathbf{u})$ are in one-to-one correspondence. Interestingly, the vector \mathbf{u} in the former is the Bloch vector of quantum mechanics, while the vector \mathbf{u} in the latter is the generic relativistically admissible velocity. Relativistically admissible velocities, in turn, give rise to the Thomas precession [9], and are regulated by the hyperbolic geometry of Bolyai and Lobachevski as explained in [10] and [11].

Viewing the Bloch vector \mathbf{u} in Eq. (4) as a relativistically admissible velocity, the identity

$$
\begin{equation*}
F\left(\rho_{1}, \rho_{2}\right)=\frac{\cosh \left(\phi_{\mathbf{w}} / 2\right)}{\cosh \phi_{\mathbf{u}}} \frac{\cosh \left(\phi_{\mathbf{w}} / 2\right)}{\cosh \phi_{\mathbf{v}}} \tag{8}
\end{equation*}
$$

was established in Ref. [8]. Here w is the Einstein sum w $=\mathbf{u} \oplus \mathbf{v}, \oplus$ being the Einstein addition operation between relativistically admissible velocities. It is given by the equation

$$
\begin{equation*}
\mathbf{w}=\mathbf{u} \oplus \mathbf{v}=\frac{1}{1+\frac{\mathbf{u} \cdot \mathbf{v}}{c^{2}}}\left[\mathbf{u}+\frac{1}{\gamma_{\mathbf{u}}} \mathbf{v}+\frac{1}{c^{2}} \frac{\gamma_{\mathbf{u}}}{1+\gamma_{\mathbf{u}}}(\mathbf{u} \cdot \mathbf{v}) \mathbf{u}\right] \tag{9}
\end{equation*}
$$

where $\gamma_{\mathbf{u}}=1 / \sqrt{1-|\mathbf{u}|^{2} / c^{2}}=\cosh \phi_{\mathbf{u}}$ is the Lorentz factor, and where c is the vacuum speed of light. The positive constant c is normalized to $c=1$, when \mathbf{u} is viewed as a Bloch vector. The rapidity $\phi_{\mathbf{w}}$ satisfies the cosine law of hyperbolic geometry,

$$
\begin{equation*}
\cosh \phi_{\mathbf{w}}=\cosh \phi_{\mathbf{u}} \cosh \phi_{\mathbf{v}}\left(1+\hat{\mathbf{u}} \cdot \hat{\hat{v}} \tanh \phi_{\mathbf{u}} \tanh \phi_{\mathbf{v}}\right), \tag{10}
\end{equation*}
$$

a result already known to Silberstein in 1914 [12].

FIG. 1. The hyperbolic triangle $A B C$. Its three sides are $|A B|$ $=\phi_{\mathbf{u}}=\tanh ^{-1}|\mathbf{u}|,|A C|=\phi_{\mathbf{v}}=\tanh ^{-1}|\mathbf{v}|$, and $\quad|B C|=\phi_{\mathbf{w}}$ $=\tanh ^{-1}|\mathbf{w}| . D$ is the midpoint of the side $B C$. The angle between $A B$ and $A C$ is equal to $\pi-\arccos (\hat{\mathbf{u}} \cdot \hat{\mathbf{v}})$.

The hyperbolic angles $\left\{\phi_{\mathbf{u}}, \phi_{\mathbf{v}}, \phi_{\mathbf{w}}\right\}$ form a hyperbolic triangle (see Fig. 1, where D is the midpoint of the side $B C$). Interestingly, the Bures fidelity for a qubit appears in Eq. (8) as the product of two similar factors. Furthermore, it follows from Eq. (8) that $F\left(\rho_{1}, \rho_{2}\right)$ is symmetric in its arguments, and is invariant under unitary transformations on the state space.

A remarkable property that Eq. (4) exhibits is that $F\left(\rho_{1}, \rho_{2}\right)$ is solely dependent on the magnitudes of \mathbf{u} and \mathbf{v}, and the angle between them (that is, $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}$). However, this remarkable property is lost when one calculates the Bures fidelity for an N-state quantum system in the case of $N \geqslant 3$; as a result, the simple geometric interpretation for the quantum fidelity as shown in Eq. (8) and in Fig. 1 is no longer valid. For instance, we take two states of a qutrit as

$$
\begin{align*}
\rho_{1} & =\frac{1}{3}(\mathbf{1}+\sqrt{3} \vec{\lambda} \cdot \mathbf{u}) \\
& =\frac{1}{3}\left(\begin{array}{ccc}
1+\sqrt{3} u_{3}+u_{8} & 0 & 0 \\
0 & 1-\sqrt{3} u_{3}+u_{8} & 0 \\
0 & 0 & 1-2 u_{8}
\end{array}\right), \\
\rho_{2} & =\frac{1}{3}(\mathbf{1}+\sqrt{3} \vec{\lambda} \cdot \mathbf{v}) \\
& =\frac{1}{3}\left(\begin{array}{ccc}
1+\sqrt{3} v_{3}+v_{8} & 0 & 0 \\
0 & 1-\sqrt{3} v_{3}+v_{8} & 0 \\
0 & 0 & 1-2 v_{8}
\end{array}\right), \tag{11}
\end{align*}
$$

where $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{8}\right)$ are the eight Hermitian generators of $\operatorname{SU}(3), \quad \mathbf{u}=\left(0,0, u_{3}, 0, \ldots, 0, u_{8}\right) \quad$ and \mathbf{v} $=\left(0,0, v_{3}, 0, \ldots, 0, v_{8}\right)$. Then, the Bures fidelity for a qutrit is given by the equation

$$
\begin{align*}
F\left(\rho_{1}, \rho_{2}\right)= & \frac{1}{9}\left[\sqrt{\left(1+\sqrt{3} u_{3}+u_{8}\right)\left(1+\sqrt{3} v_{3}+v_{8}\right)}\right. \\
& +\sqrt{\left(1-\sqrt{3} u_{3}+u_{8}\right)\left(1-\sqrt{3} v_{3}+v_{8}\right)} \\
& \left.+\sqrt{\left(1-2 u_{8}\right)\left(1-2 v_{8}\right)}\right]^{2} \tag{12}
\end{align*}
$$

which is not solely dependent on $|\mathbf{u}|,|\mathbf{v}|$, and $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}$.
We therefore propose in the following theorem an alternative definition for quantum fidelity, $\mathcal{F}\left(\rho_{1}, \rho_{2}\right)$, following which the fidelity measure for any two states of a qunit [13] has the geometric interpretation suggested by Eq. (8).

II. FORMALISM

Theorem. Let

$$
\begin{equation*}
\rho(\mathbf{n})=\frac{1}{N}\left(\mathbf{1}+\sqrt{\frac{N(N-1)}{2}} \vec{\lambda} \cdot \mathbf{n}\right) \tag{13}
\end{equation*}
$$

be the density matrix of a qunit, where $\mathbf{1}$ is the $N \times N$ unit matrix, $\vec{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N^{2}-1}\right)$ are the generators of $\mathrm{SU}(N)$, and \mathbf{n} is the $\left(N^{2}-1\right)$-dimensional Bloch vector. Furthermore, let $\rho_{1}=\rho(\mathbf{u})$ and $\rho_{2}=\rho(\mathbf{v})$ be two states of a qunit. Then the fidelity measure

$$
\begin{align*}
\mathcal{F}\left(\rho_{1}, \rho_{2}\right)= & \frac{1-r}{2}+\frac{1+r}{2}\left[\operatorname{tr}\left(\rho_{1} \rho_{2}\right)\right. \\
& \left.+\sqrt{1-\operatorname{tr}\left(\rho_{1}^{2}\right)} \sqrt{1-\operatorname{tr}\left(\rho_{2}^{2}\right)}\right] \tag{14}
\end{align*}
$$

where $r=1 /(N-1)$, can be written as

$$
\begin{equation*}
\mathcal{F}\left(\rho_{1}, \rho_{2}\right)=\frac{\cosh \left(\phi_{\mathbf{w}} / 2\right)}{\cosh \phi_{\mathbf{u}}} \frac{\cosh \left(\phi_{\mathbf{w}} / 2\right)}{\cosh \phi_{\mathbf{v}}} \tag{15}
\end{equation*}
$$

where $\mathbf{w}=\mathbf{u} \oplus \mathbf{v}$.
Proof. From the well-known trace relations

$$
\begin{equation*}
\operatorname{tr}\left(\lambda_{i}\right)=0, \operatorname{tr}\left(\lambda_{i} \lambda_{j}\right)=2 \delta_{i j} \tag{16}
\end{equation*}
$$

for the generators of $\operatorname{SU}(N)$ we have

$$
\begin{align*}
& \operatorname{tr}\left(\rho_{1} \rho_{2}\right)=\frac{1+(N-1) \mathbf{u} \cdot \mathbf{v}}{N}, \\
& \operatorname{tr}\left(\rho_{1}^{2}\right)=\frac{1+(N-1)|\mathbf{u}|^{2}}{N}, \\
& \operatorname{tr}\left(\rho_{2}^{2}\right)=\frac{1+(N-1)|\mathbf{v}|^{2}}{N} . \tag{17}
\end{align*}
$$

Substituting these equations into Eq. (14), noting $r=1 /(N$ -1), we obtain Eq. (15), and the proof is complete.

III. CONCLUSION AND DISCUSSION

We have proposed an alternative fidelity measure between two states of a quit. For any N-state quantum system, the fidelity measure possesses the geometric interpretation that Eq. (15) uncovers. The following observations may be noted.
(a) Geometric interpretation of the parameter r in Eq. (14): It is well known that a density matrix must satisfy three conditions. (i) Trace unity $\operatorname{tr} \rho=1$; (ii) Hermiticity; and (iii) positivity, i.e., all eigenvalues of ρ are non-negative. Indeed, the operator $\rho(\mathbf{n})$ in Eq. (13) satisfies the first two condi-
tions. However, not every vector $\mathbf{n},|\mathbf{n}| \leqslant 1$, allows $\rho(\mathbf{n})$ to satisfy the positivity condition. Assuming that $\rho(\mathbf{u})$ is a density matrix satisfying the above three conditions, if $\rho(\mathbf{v})$ is a density matrix, one must have the constraint $\operatorname{tr}\left(\rho_{1} \rho_{2}\right) \geqslant 0$, that is $-\mathbf{u} \cdot \mathbf{v} \leqslant r$. For instance, let $\rho(\hat{\mathbf{u}})=(\mathbf{1}+\sqrt{3} \vec{\lambda} \cdot \hat{\mathbf{u}}) / 3$ be a pure state of a qutrit, where $\hat{\mathbf{u}}$ is a unit vector (e.g., $\hat{\mathbf{u}}$ $=(0,0, \sqrt{3} / 2,0, \ldots, 0,1 / 2)$. Then, $\rho(-\hat{\mathbf{u}})$ is not a density matrix since it violates the positivity condition. The operator $\rho(-\mathbf{u})=(\mathbf{1}-\sqrt{3}|\mathbf{u}| \vec{\lambda} \cdot \hat{\mathbf{u}}) / 3$ is a density operator if $|\mathbf{u}| \leqslant 1 / 2$ (Note that $r=1 / 2$ for $N=3$). Thus, if $|\mathbf{n}| \leqslant r, \rho(\mathbf{n})$ is always a density matrix regardless of the direction of \mathbf{n}. Geometrically, r is the radius of a characteristic ball inside the Bloch
sphere such that any point located either on the surface of the ball or inside the ball corresponds to a physical state of a qunit.
(b) For $N=2$, we have $r=1$, which implies that the characteristic ball is identical to the usual Bloch sphere of a qubit. Therefore one obtains $\mathcal{F}\left(\rho_{1}, \rho_{2}\right)=F\left(\rho_{1}, \rho_{2}\right)$, that is, in the case of a qubit the alternative fidelity measure is identical to the Bures fidelity.
(c) The radius r decreases when N increases, $r \rightarrow 0$ when $N \rightarrow \infty$. For Bloch vectors \mathbf{u} and \mathbf{v} satisfying $0 \leqslant|\mathbf{u}|,|\mathbf{v}| \leqslant r$, one can obtain the usual trace distance $d=|\mathbf{u}-\mathbf{v}| / 2$ from the distance measure [1] $d^{2}\left(\rho_{1}, \rho_{2}\right)=2\left[1-\sqrt{\mathcal{F}\left(\rho_{1}, \rho_{2}\right)}\right]$ as a first approximation.
[1] D. Bures, Trans. Am. Math. Soc. 135, 199 (1969); A. Uhlmann, Rep. Math. Phys. 9, 273 (1976); ibid. 24, 229 (1986); Ann. Phys. (Leipzig) 46, 63 (1989); M. Hübner, Phys. Lett. A 163, 229 (1992); 179, 226 (1993).
[2] R. Jozsa, J. Mod. Opt. 41, 2315 (1994); B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[3] M.B. Ruskai, Rev. Math. Phys. 6, 1147 (1994); H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, and B. Schumacher, Phys. Rev. Lett. 76, 2818 (1996); C. A. Fuchs, Ph.D. thesis, University of New Mexico, 1996; e-print quant-ph/9601020.
[4] V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
[5] J. Twamley, J. Phys. A 29, 3723 (1996); H. Scutaru, ibid. 31, 3659 (1998); X.B. Wang, C.H. Oh, and L.C. Kwek, Phys. Rev. A 58, 4186 (1998); X.B. Wang, L.C. Kwek, and C.H. Oh, J. Phys. A 33, 4925 (2000); L.C. Kwek, C.H. Oh, X.B. Wang, and Y. Yeo, Phys. Rev. A 62, 052313 (2000); P.B. Slater, Phys. Lett. A 247, 1 (1998); J. Dittmann, J. Phys. A 32, 2663 (1999); J. Dittmann and A. Uhlmann, J. Math. Phys. 40, 3246 (1999).
[6] B.W. Schumacher, Phys. Rev. A 54, 2614 (1996); E. Knill and R. Laflamme, ibid. 55, 900 (1997); H. Barnum, E. Knill, and M.A. Nielsen, e-print quant-ph/9809010.
[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[8] J.-L. Chen, L. Fu, A.A. Ungar, and X.-G. Zhao, Phys. Rev. A 65, 024303 (2002).
[9] J.-L. Chen and M.-L. Ge, J. Geom. Phys. 25, 341 (1998); P.K. Aravind, Am. J. Phys. 65, 634 (1997); A.A. Ungar, Found. Phys. 27, 881 (1997); J.-L. Chen and A.A. Ungar, ibid. 31, 1611 (2001); ibid. 32, 531 (2002).
[10] Abraham A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces (Kluwer Academic, Dordrecht, 2001).
[11] A. A. Ungar, in The János Bolyai Memorial Volume, edited by A. Prekopa, E. Kiss, Gy. Staar, and J. Szenthe (Vince, Budapest, 2002).
[12] L. Silberstein, The Theory of Relativity (MacMillan, London, 1914), p. 169.
[13] D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, Phys. Rev. Lett. 85, 4418 (2000); J.-L. Chen, D. Kaszlikowski, L.C. Kwek, C.H. Oh, and M. Zukowski, Phys. Rev. A 64, 052109 (2001).

[^0]: *Email address: jinglingchen@eyou.com
 ${ }^{\dagger}$ Email address: ungar@gyro.math.ndsu.nodak.edu

