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Abstract
We investigate the quantum transport dynamics of periodically delta-kicked Bose–Einstein
condensate under the effect of spatially modulated nonlinear interactions. The spatial modulation
frequency can dramatically affect the transport behaviors of the ultra-cold atoms. For odd frequency,
the linear growth of the directed current is close to that of the noninteracting case for not very strong
nonlinear interaction. Both the acceleration and the quantum state evolution gradually approach that
of the noninteracting case with increasing frequency. For other values of frequency, a very weak
nonlinear interaction can dramatically reduce the linear growth of the directed current. The quantum
state evolution differs rapidly from that of the noninteracting case. The underlying dynamic
mechanism is uncovered and some important implications are addressed.

Keywords: Bose–Einstein condensate, directed transport, coherent manipulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Directed transport, which is usually referred to as ratchets
phenomenon [1–3], has recently gained renewed interest as its
mechanism is relevant for the construction of nanoscale
devices, such as particle separation and electron pumps, and
for the understanding of biological molecular motors [4–7].
The breaking of spatial-temporal symmetry ensures the
occurrence of directed transport. Bose–Einstein condensate
(BEC) atoms which are loaded in an optical lattice are an
ideal system for investigating ratchets phenomenon [8]. On
the condition that the optical lattice is spatially asymmetric
[9, 10] or that its phase is asymmetrically modulated in time
[11], BEC atoms exhibit directed motion. A number of BEC
experiments have observed the directed momentum current
which is caused by the delta-kicking optical lattice under
quantum resonance conditions [12–16].

The realization of dilute BEC gases has opened new
opportunities for studying dynamical systems in the presence
of many-body interactions. The mean-field treatment of the
interactions between atoms induces a nonlinear modification
to the Schrödinger equation. Interestingly, the nonlinear
interaction can give rise to directed transport [17, 25], and can
destroy the ballistic diffusion [18] of delta-kicked BEC atoms
in the quantum resonance case. A recent trend in atom optics
concerns the quantum dynamics of BEC atoms under the
effect of spatially modulated nonlinear interactions [19].
Indeed, significant progress in the atom optics technique
allows spatial modulation of the atomic interaction strength
via optical standing wave [20, 21] or magnetic field [22]-
induced Feshbach resonance management. In such contexts,
understanding the ratchet effects in the presence of spatially
modulated nonlinear interaction is of great importance.
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In this paper, we numerically investigate the directed
momentum current of delta-kicked BEC atoms under the
effects of spatially modulated nonlinear interactions of the
form ( )∣ ∣gq yg sin0

2, where g0 is nonlinear strength and γ
denotes spatial modulation frequency. Without nonlinear
interaction, i.e., =g 00 or g = 0, the periodic kick in the
quantum resonance condition leads to linear growth of the
momentum current with time [23, 24]. In this work, we
numerically investigate the generation of the momentum
current under the effects of nonlinear interaction, which can
be controlled by adjusting the parameters g0 and γ.

Our numerical results show that, for fixed γ, the accel-
eration of the directed momentum current gradually decreases
to zero with increasing g0, which demonstrates the suppres-
sion of the directed transport of BEC atoms by nonlinear
interaction. Such a phenomenon is similar to that of a delta-
kicked BEC system whose nonlinear interaction is unmodu-
lated (i.e., ∣ ∣yg0

2) [25]. We further numerically investigate the
nonlinear effects on momentum current for a wide range of γ.
Interestingly, for odd values of γ, the suppression of the
directed motion by nonlinearity is apparent only for a large
enough g0. In this situation, the acceleration of the momentum
current approaches that of the noninteracting case ( =g 00 or
g = 0) with increasing γ, which demonstrates the dis-
appearance of the nonlinearity effects. Thus, the spatial
modulation seems to reduce nonlinearity effects. For other
values of γ, a very weak nonlinear strength is able to dra-
matically reduce the generation of the momentum current. In
this situation, nonlinearity effects are reinforced by spatial
modulation.

The dependence of nonlinear effects on the spatial
modulation is confirmed by the fidelity of quantum states
between the interacting and noninteracting case. Our numer-
ical results show that, for odd values of γ with a fixed g0, the
fidelity decays from unity to saturation levels as time evolves.
Moreover, the saturation level increases with increasing γ.
For other values of γ, the fidelity rapidly decays from unity to
almost zero as time evolves. Therefore, the time-averaged
fidelity is almost zero except for some peaks corresponding to
odd values of γ. In addition, the values of peaks gradually
approach unity with increasing γ. In order to reveal the
underlying mechanism, we analytically study the time evol-
ution of the quantum states in the presence of the nonlinear
interaction. Our approximated analysis shows that, for odd
values of γ, the nonlinearity effects at different times cancel
each other; thus the quantum state revives after the evolution
over a period of p=T 4 . Such periodic revival is a character
of quantum resonance in the noninteracting case. For even
values of γ, the nonlinear effects at different times are
mutually enforced. As a consequence, the wave packets
gradually differ from that of the noninteracting case with time
evolution. In this situation, we analytically obtained an
approximated expression of the quantum state at time

p=T 4 . We use this state to numerically calculate the growth
rate of the momentum current for a wide region of g0. It
qualitatively shows the reduction, reversal, and finally the
disappearance of the directed momentum current with the
increase in strength of the nonlinear interaction.

The paper is organized as follows. In section 2, we
describe the system and show the momentum current in the
presence of spatially modulated nonlinear interaction. In
section 3, we study the wave packet dynamics, including the
probability density distribution in momentum space and the
fidelity of the quantum state between the interacting and
noninteracting case. An analytical study of the time evolution
of the quantum state is presented in section 4. Section 5
concludes this work.

2. Directed momentum current

We consider the following BEC model with a spatially
modulated interaction. Taking the Planck constant ÿ, the
single-particle mass and the radius of the ring, the BEC
satisfies the following dimensionless Gross–Pitaevskii
equation (GPE),

( ) ( )∣ ∣ ( )y q d gq y y
¶
¶

= + +
⎡
⎣⎢

⎤
⎦⎥t

p
K gi

2
cos sin , 1T

2

0
2

where q= - ¶ ¶p i , K is the kick strength, and
( )d d= å -t jTT j with T the kick period. Due to the

significant progress achieved in the past years in the
techniques of managing the atomic scattering strength by
means of Feshbach resonance [26], the nonlinear interaction
strength in the GPE can be spatially modulated [20–22].

When =g 00 , the system has spatial and time-reversal
symmetries, in which the emergence of the directed transport
requires the rectification of kicking force that can be realized
by setting an asymmetric initial wave packet. Experimentally
using the Bragg pulse, one can prepare a superposition
state of the form ∣ [∣ ∣ ]yñ = ñ + - ñf0 e 1ini

1

2
i with a relative

phase factor f [13]. For =g 00 , the quantum state can revive
exactly at a period duration of the Talbot time ( p=T 4 )
[27, 28]. In this situation, the average momentum takes
the form ( ) ( )fá ñ = á ñ +p t p tsinK

0 2
, where á ñp0 is the

initial value. Such linear growth of the average momentum
with time indicates the emergence of directed current in
momentum space. The acceleration (or growth rate)
is ( )f= á ñ =R p t Kd d sin 2.

In order to investigate the momentum current of the
nonlinear system, we solve the nonlinear Schrödinger
equation numerically using the splitting operator method [29].
Figure 1(a) shows the time dependence of á ñp for g = 2 with
various g0. We see that for weak nonlinearity (e.g., g0 = 0.1
and 0.2), the linear growth rate of the momentum current is
much smaller than that of the noninteracting case ( =g 00 ).
With an increase in the nonlinearity to =g 10 , the momentum
current reverses direction and its growth rate changes to
negative. Such consecutive acceleration of the momentum
current to the negative direction is different from the current
reversal in [12, 30] where the growth in momentum current
saturates as time evolves. At strong nonlinearity of =g 30 ,
the momentum current almost vanishes. The above observa-
tions are more clearly demonstrated in figure 1(b), in which
the acceleration R for g = 2 decreases from 0.37 ( )=K

2
to a

2
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negative value −0.05, oscillates, and finally converges into
zero after g = 1.5. Moreover, for g = 2, the decrease of R
with g0 is much faster than that of the unmodulated non-
linearity. This demonstrates that the spatially modulated
nonlinearity can dramatically suppress the generation of the
momentum current. Such suppression of momentum current
by the nonlinearity is a common phenomenon for even values
of γ (see figure 1(b)).

For odd values of γ, the nonlinearity effects on the
momentum current become weak. Figure 1(c), for g = 3,
shows that the momentum current has a small difference from
that of the noninteracting case even when =g 0.80 , for which
the directed current almost disappears with g = 2 (see
figure 1(b)). With increasing g0, the momentum current
reduces and reverses direction (e.g., for =g 30 ). For much
stronger g0 (e.g., =g 40 ), the value of á ñp is almost zero with
time evolution, which demonstrates the disappearance of the
momentum current. We also numerically investigate the
dependence of the acceleration R on g0, which is shown in
figure 1(d). We can see that, for a specific γ, the value of R
decreases from 0.37 to almost zero with increasing g0, which
demonstrates the suppression of the momentum current by
nonlinear interaction. Detailed investigations show that the
acceleration approaches that of the noninteracting case with
increasing γ. This clearly demonstrates that nonlinearity
effects become weak with the increase in γ.

From the above results, we see that the modulation fre-
quency γ is able to control the nonlinearity effects on the

directed motion of the BEC atoms. This is more clearly
demonstrated in figure 2, which shows the dependence of R
on γ for different g0. Figure 2(a), for =g 10 , shows that the
acceleration R rapidly decays from 0.37 to almost zero with
increasing γ. Interestingly, it has some peaks corresponding to
odd values of γ, except for =g 10 , with which the accelera-
tion is negative. More important is that the acceleration of the
peaks gradually approaches 0.37 with increasing γ, which
demonstrates the disappearance of nonlinearity effects.
However, such dependence of acceleration on γ disappears
for strong nonlinearity. Figure 2(b) for =g 30 shows that the
acceleration is almost zero for all γ. Since both the spatial
modulation of nonlinear interactions [20–22, 26] and the
periodically kicked BEC [32–34] are realizable in today’s
ultra-cold atom experiments, our investigations may be
experimentally observed, and may be helpful for the manip-
ulation of the directed transport of BEC atoms.

3. Probability distribution in momentum space

To gain insight into the mechanism of the momentum current
of the nonlinear system, we trace the time evolution of the
wave packet in momentum space. Figure 3 shows the num-
erical results for g = 3 with different g0. From figure 3(a) we
can see that, for =g 00 , the wave packet spreads along the
positive momentum direction, which corresponds to the linear
growth of the directed current. When the nonlinearity is
present (e.g., g = 1.2 in figure 3(b)), the wave packet in
momentum space separates into three portions. One part at
p = 0 does not move, and the other two parts move in
opposite directions as time evolves. The movement of BEC
atoms to negative momentum results in a decrease in the
momentum current with respect to the noninteracting case. At
higher nonlinearity of g = 3.0 (see figure 3(c)), the portion of
BEC atoms moving to a negative direction becomes large,
and as a consequence the current changes direction. For
adequately strong nonlinearity, our extensive investigations

Figure 1. Left panels: time dependence of the average momentum
á ñp for g = 2 (top) and 3 (bottom), respectively. (a) From top to
bottom =g 00 (black line), 0.1 (red line), 0.2 (green line), 3 (orange
line), 0.4 (blue line) and 1 (violet line). (c) From top to bottom

=g 00 (black line), 0.8 (red line), 1.2 (green line), 2 (violet line), 1.5
(blue line), 4 (orange line) and 3 (cyan line). Time is measured in the
number of kick periods ( p=T 4 ). Right panels: the acceleration R
versus g0 for even (top) and odd (bottom) γ, respectively. (b) g = 2
(red circles), 4 (green up triangles), 6 (blue diamonds), 8 (cyan down
triangles) and 10 (violet pentagrams). (d) g = 1 (red circles), 3
(green up triangles), 5 (blue diamonds), 7 (cyan down triangles) and
9 (violet pentagrams). In (b) and (d), for comparison, the values of R
of unmodulated nonlinear interaction (i.e., ∣ ∣yg0

2) are denoted by the
black squares. In (d), the dotted line denotes R = 0.37 which is the
acceleration of the noninteracting case (i.e., =g 00 ). The parameters
are: K = 0.74, p=T 4 and f = p

2
.

Figure 2. The acceleration R versus γ for =g 10 (top) and 3
(bottom). Other parameters are the same as in figure 1.

3
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show that the wave packet is localized at the momentum
p = 0 (e.g., =g 40 in figure 3(d)). In this case, the directed
momentum current vanishes.

Figure 4 shows the comparison of momentum distribu-
tions between the interacting and noninteracting case for
different g0 and γ. We see that, for g = 2, the momentum
distribution of =g 0.10 has an obvious difference from that of
the noninteracting case in two aspects: (i) a significant peak
around p = 0; and (ii) a large fraction of the momentum
distribution spreading to the negative momentum (see
figure 4(a)). Such difference becomes more evident for large
g0, e.g., =g 0.40 (in figure 4(c)) for which momentum dis-
tribution has a prominent peak around p = 0. This demon-
strates the dramatic influence of nonlinear interaction on the
time evolution of the quantum state. However, for g = 3 (in
figure 4(b) and figure 4(d)), the momentum distributions with
g0 = 0.1 and 0.4 are all in good agreement with that of

=g 00 , which demonstrates that the spatial modulation of
odd γ can reduce nonlinear effects.

In the above section, we show that the current behavior
becomes closer to that of the noninteracting case with

increasing odd γ. This is confirmed by the corresponding
momentum distributions. Figure 5(a) shows that, for g = 1,
the momentum distributions between =g 10 and =g 00 have
significant differences. Interestingly, such differences gradu-
ally disappear with increasing γ, as shown in figure 5(c) with
g = 5. For strong enough nonlinearity, e.g., d = 11 in
figure 5(e), the momentum distributions between =g 10 and

=g 00 are in good agreement. The same process occurs for
=g 20 with increasing γ, as shown in figure 5(b), figure 5(d)

and figure 5(f).
A commonly used measure of the discrepancy between

two quantum states is fidelity ( ) ∣ ( )∣ ( ) ∣y j= á ñF t t t 2 [35, 36].
We numerically calculate the fidelity for quantum states
between the interacting and noninteracting case. Figure 6(a),
for odd values of γ, shows that, with time evolution, the
fidelity decays from unity to saturation levels which are much
larger than zero except for g = 1. Interestingly, the saturation

Figure 3. Time evolution of the probability density distribution in the
momentum space for g = 3 with =g 00 (a), 1.2 (b), 3.0 (c) and 4.0
(d). Other parameters are the same as in figure 1.

Figure 4. The momentum distribution (empty red circles) at t = 100
for g = 2 (left panels) and 3 (right panels) with =g 0.10 (top panels)
and 0.4 (bottom panels). The corresponding momentum distributions
of the noninteracting case are depicted by solid black squares. Other
parameters are the same as in figure 1.

Figure 5. The momentum distributions (empty red circles) at t = 100
for =g 10 (left panels) and 2 (right panels); from top to bottom
g = 1, 5 and 11, respectively. The corresponding momentum
distributions of the noninteracting case are depicted by solid black
squares. Other parameters are the same as in figure 1.

Figure 6. (a) Time dependence of fidelity F of quantum states
between =g 10 and =g 00 , with g = 1 (black line), 3 (green line), 5
(blue line), 7 (red line), 9 (cyan line) and 11 (navy line). (b) Same as
in (a) but for g = 2 (black line), 4 (green line), 6 (blue line), 8 (red
line) and 10 (cyan line). (c) Time-averaged fidelity F̄ versus γ for

=g 10 . Other parameters are the same as in figure 1.

4
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values increase with increasing γ, which proves that the
quantum states approach that of the noninteracting case. For
even values of γ, the fidelity decays from unity to almost zero
(see figure 6(b)), which demonstrates that the quantum states
are different from that of the noninteracting case. The above
observations are more clearly demonstrated in figure 6(c). We
can see that the time-averaged fidelity rapidly decays from
unity to almost zero with increasing γ, except for some peaks
corresponding to odd γ (g > 1). More important is that the
time-averaged fidelity of the peaks gradually approaches
unity with increasing γ, which reveals the disappearance of
nonlinear effects.

4. Effects of spatially modulated nonlinearity on the
time evolution of the quantum state

A pictorial explanation is that, for initial probability dis-
tribution of the form ∣ ( )∣ [ ( )] ( )y q q f p= + -1 cos 2ini

2

with f p= 2, any perturbation will be maximal if it has a
maximal impact at this precise phase angle with respect to the
kick potential. For odd γ, the nonlinearity is maximal at this
value in θ space but its force is zero. For other values of γ, the
contrary is true and the effect of the nonlinearity is maximized
[30, 31]. In order to reveal how the nonlinear interaction
affects the wave packet evolution, we analytically derive the
time evolution of the quantum state over a period T. It is
obtained by approximately separating the time evolution of a
period into two steps. For the evolution of the state in each
time interval (D =t T 2), we use the splitting operator
method only one time. The evolution operator in the first time
interval takes the form

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠U

T
U

T T
U

T
U

T

2
, 0

2
,

4 4 4
, 0 ,f g f

where ( )U t t,f 2 1 denotes the free evolution operator, i.e.,

( ) = -
-⎛

⎝⎜
⎞
⎠⎟U t t

p t t
, exp i

2 2
,f 2 1

2
2 1

and ( )Ug
T

4
is the evolution operator of the nonlinear

interaction, i.e.,

( ) ( )gq y q= -⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥U

T
g

T T

4
exp i sin ,

4 2
2g 0

2

with ( ) ( ) ( )y q y q= U, , 0 , 0T
f

T

4 4
being the state after the free

evolution of the time interval D =t T 4. The initial state
is ( ) { [ ( )]}y q f q p= + -, 0 1 exp i 4 .

The quantum state at the time = -t T takes the form

( ) ( )

( ) ( )

y q y q

y q

=

=

´

- -

-⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T U T
T

U
T

U T
T

U
T

U
T T

U
T

U
T

, ,
2 2

, 0 , 0

,
3

4

3

4

3

4
,

4

4 4
, 0 , 0 , 3

f g f

g f

where the superscript ‘-’ denotes the time immediately before
the first kick.

For p=T 4 , the free evolution of a quantum state during
a time interval of T 4 belongs to the quantum resonance case,
i.e., t p= p q4 with p = 1 and q = 4. Fortunately, we can

obtain an analytical expression for the quantum state ( )y q, T

4
.

The reason is that, for t p= p q4 , the analytical expression
of the quantum state ( )y q t, [17, 28] can be expressed as

( ) ( )åy q t y q p= +
=

- ⎛
⎝⎜

⎞
⎠⎟C

n

q
, 2 , 0 , 4

n

q

n
0

1

with the coefficients

( )å p p
= - -

=

- ⎛
⎝⎜

⎞
⎠⎟C

q

p

q
m

mn

q

1
exp i

2
i
2

. 5n
m

q

0

1
2

According to equations (4) and (5), we get

( ) ( )

( )

y q y q y q p= + +p p-⎜ ⎟⎛
⎝

⎞
⎠

T
,

4

1

2
e , 0

1

2
e , 0 .

6

i 4 i 4

For ( ) { [ ( )]}y q f q p= + -, 0 1 exp i 4 ,

[ ( )]y q
p

f q= + -⎜ ⎟⎛
⎝

⎞
⎠

T
,

4

1

2
1 sin .

2

Then, according to equation (2), the nonlinear evolution
operator at the time =t T 4 takes the form

{ ( )[ ( )]}gq f q= - + -⎜ ⎟⎛
⎝

⎞
⎠U

T
g

4
exp i sin 1 sin .g 0

After the acting of Ug on ( )y q, T

4
, the quantum state is

{ ( )[ ( )]}y q gq f q

y q

= - + -

´

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T
g

T

,
4

exp i sin 1 sin

,
4

.

g 0

The next step is the free evolution of the quantum state

( )y q,g
T

4
from the time =t T 4 to T3 4 (see equation (3)).

In this situation, the time interval equals t p= 2 . Then,
according to equations (4) and (5), we can obtain

{ ( )[ ( )]}

( )

y q y q p

gq gp f q

y q p

= +

= - + - -

´ +

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T T

g

T

,
3

4
,

4
exp i sin 1 sin

,
4

.

7

g

0

The modular square of the above state takes the form

[ ( )]y q
p

f q= - -⎜ ⎟⎛
⎝

⎞
⎠

T
,

3

4

1

2
1 sin .

2
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Then, the nonlinear evolution operator at the time =t T3 4
is

( )

{ ( )[ ( )]}

gq y q

gq f q

= -

= - - -

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥U

T
g

T T

g

3

4
exp i sin ,

3

4 2

exp i sin 1 sin .

g 0

2

0

After the acting of ( )Ug
T3

4
on ( )y q, T3

4
, the quantum state is

expressed as

{ ( )[ ( )]}y q gq f q

y q

= - - -

´

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T
g

T

,
3

4
exp i sin 1 sin

,
3

4
.

g 0

Inserting equation (7) in the above equation yields

{ [ ( )]

[ ( ) ( )]}

[ ( )]
( )

y q f q

gq gq gp y q p

q g y q p

= - - -

´ + + +

= - F +

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T
g

T

T

,
3

4
exp i 1 sin

sin sin ,
4

exp i , ,
4

,

8

g 0

where the phase factor is

( ) [ ( )][ ( ) ( )]q g f q gq gq gpF = - - + +g, 1 sin sin sin .0

For odd γ, ( ) ( )gq gq gp+ + =sin sin 0, which implies
that the nonlinearity effects at different steps cancel each
other. As a consequence, the phase factor is zero, i.e., F = 0.
In this case, the quantum state ( )y q,g

T3

4
takes the form

y q y q p= +⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T T
,

3

4
,

4
.g

Then, according to equations (4) and (5), the free evolution of
the wave function ( )y q,g

T3

4
from the time =t T3 4 to

= -t T yields

( )

( )

y q y q p

y q

= +

+

p

p

- - ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T
T

T

,
1

2
e ,

4
1

2
e ,

4
. 9

i 4

i 4

By inserting equation (6) in equation (9), we obtain

( ) ( ) ( )y q y q=-T, , 0 . 10

The above equation shows that the quantum state revives
exactly after the time evolution of p=T 4 , which is a
characteristic of quantum resonance of the noninteracting
case. Our approximated analysis may explain why the
nonlinearity effects disappear for odd γ.

For even γ, ( ) ( ) ( )gq gq gp gq+ + =sin sin 2 sin , which
means that the nonlinearity effects at different steps enforce

each other. The quantum state ( )y q,g
T3

4
takes the form

{ ( )[ ( )]}y q gq f q

y q p

= - - -

´ +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

T
g

T

,
3

4
exp i2 sin 1 sin

,
4

.

g 0

According to equations (4) and (5), the free evolution of the
wave function ( )y q,g

T3

4
from time =t T3 4 to = -t T

yields

( ) [ ( )]
{ ( ) [ ( ) ( )]

( ) [ ( ) ( )]}
( )

y q gq
y q gq q
y q p gq q

= -
´
+ +

-T g

g

g

, exp i2 sin

, 0 cos 2 sin cos

, 0 sin 2 sin cos .

11

0

0

0

After the first kick, the quantum state is

( ) [ ( )] [ ( )]
{ ( ) [ ( ) ( )]

( ) [ ( ) ( )]}
( )

y q q gq
y q gq q
y q p gq q

= - -
´
+ +

+T K g

g

g

, exp i cos exp i2 sin

, 0 cos 2 sin cos

, 0 sin 2 sin cos .

12

0

0

0

Since the momentum current almost linearly increases with
time, we can roughly regard the acceleration R at t = T as that
of the long time behaviors. By using the approximated
expression of the wave function in equation (12), we
numerically calculate the acceleration R for a wide regime
of g0, which is shown in figure 7. We see that, for a specific d,
the R decreases from 0.37 ( )=K

2
to almost zero with

increasing g0, which is qualitatively consistent with the
numerical results of R in figure 1.

5. Conclusion

In this work, we have investigated, both numerically and
analytically, the quantum resonance ratchets of the

Figure 7. The acceleration R at t = 1 versus g0 for g = 4 (black
squares), 6 (red circles), 8 (blue triangles) and 10 (green diamonds).
Other parameters are the same as in figure 1.
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periodically kicked BEC in the presence of spatially
modulated nonlinear interaction. Our numerical results
show that nonlinearity effects on the directed motion of
BEC atoms can be controlled by the spatial modulation
frequency. For odd values of γ, the current behavior has an
apparent difference from that of the noninteracting case
only for strong enough nonlinear interaction. Both the
acceleration of the momentum current and the quantum
state gradually approach the noninteracting case with
increasing γ. Therefore, the spatial modulation seems to
suppress the nonlinear interactions. Our approximated
analysis shows that the nonlinearity effects at different time
steps cancel each other, thus the quantum state revives after
one period time evolution, which is a characteristic of the
quantum resonance phenomenon.

For other values of γ, the nonlinear interactions can
dramatically reduce the generation of the momentum current
with respect to the noninteracting case. Moreover, the accel-
eration of momentum current is much smaller than that of the
unmodulated case, which demonstrates that the spatial mod-
ulation enhances nonlinearity effects. This is because non-
linear effects at different time steps enhance each other. In
this situation, the quantum state rapidly differs from the
noninteracting case, which is characterized by the fast decay
of the fidelity from unity to almost zero, as time evolves. By
using an approximated expression of the quantum state after
one period time evolution, we numerically investigate the
acceleration of the momentum current, which qualitatively
shows the reduction and reversal of directed current by the
nonlinearity. We expect that our investigations may be useful
for the coherent manipulation of the quantum transport of
BEC atoms.
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