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Abstract – We investigate high-fidelity superadiabatic quantum driving in a chirped Gaussian
two-level model with a Gaussian temporal envelope and a linear detuning. We show that the
nonadiabatic losses can be canceled to any desired order by constructing and adjusting an auxiliary
Hamiltonian (counter-diabatic field) and a symmetry in the fidelity arises on the counter-diabatic
field ratio. A high-fidelity, robust, and accelerated (in a shorter time) transitionless superadiabatic
population transfer is achieved that ensures a perfect following of the instantaneous adiabatic
ground state even in the nonadiabatic regime. The features make the superadiabatic protocol a
potentially important tool for quantum information.

Copyright c© EPLA, 2016

Introduction. – Quantum adiabatic processes are a
powerful strategy to implement quantum state control
which aims at manipulating a quantum system to at-
tain a prescribed target state in a controlled and opti-
mal way [1–3]. During adiabatic evolution, the system
follows an eigenstate of the Hamiltonian, i.e., if the sys-
tem is prepared in an eigenstate of the Hamiltonian at an
initial time, it will evolve to the corresponding instanta-
neous eigenstate at later times. Based on the adiabatic
dynamics, many different processes, such as controlling
chemical reactions, laser cooling, nuclear magnetic reso-
nance, quantum information, and fast population transfer
in quantum optics, were realized both theoretically and ex-
perimentally in the recent past [4–7]. However, often such
an adiabatic process may be too slow to satisfy the adi-
abatic criteria, and in nearly all adiabatic techniques the
population transfer is incomplete, with the fidelity close
to, but less than, 1 [8]. Therefore various protocols have
been devised to speed up the process and to enhance the
fidelity of quantum manipulation processes [9–14].

Among the various popular methods, the superadia-
batic (also known as transitionless or counterdiabatic)
quantum driving [12,13] and shortcut to adiabaticity [14]

(a)E-mail: lbfu@iapcm.ac.cn

are two valuable tools to speed up the adiabatic quantum
behavior. The former suppresses the nonadiabatic tran-
sitions between energy eigenstates and ensures a per-
fect adiabatic following by constructing an auxiliary field
(Hamiltonian). The latter puts forward another reverse
engineering approach using the Lewis-Riesenfeld (LR) in-
variant to carry the eigenstates of a Hamiltonian from
a specified initial to a final configuration, then to de-
sign the transient Hamiltonian from the LR invariant.
Although different in form, those driving methods are
shown to be essentially equivalent to each other by prop-
erly adjusting the reference Hamiltonian [14]. Recently,
these protocols have been extended to many quantum
systems [15–22]. Experiments with superadiabatic pro-
tocols have been demonstrated for a Bose-Einstein con-
densate loaded into an accelerated optical lattice [23,24],
the electron spin of a single nitrogen-vacancy center in di-
amond [25], a large single-photon detuning system with a
cold atomic ensemble [26], and a continuous variable sys-
tem for adiabatic transport of a trapped ion [27].

Two-level systems are a fundamental ingredient and
play an important role in quantum mechanics. Although
rarely existing in nature in their pure form, they often
serve as models in many areas of physics and are successful
in describing a large variety of physical phenomena. Many
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problems involving multiple states and complicated link-
age patterns can often be understood only by reduction to
effective two-level problems. The quest for optimal control
of the two-level systems has a long history, and protocols
denoted as Landau-Zener, Rosen-Zener, Demkov-Kunike,
Roland-Cerf, and composite pulses have been studied for
many years [28–31]. Within the framework of adiabatic
quantum manipulation, the high-fidelity superadiabatic
quantum driving has been achieved in generalized Landau-
Zener, Allen-Eberly, and tangent models [23,24]. A lin-
early chirped Gaussian pulse with a Gaussian temporal
envelope and a linear detuning is also a typical protocol
for two-level quantum systems and has been widely used
in atomic, molecular, optical and plasma physics [32–35].
Experimentally, the model has been applied to tune band-
width frequency, to simulate the process of laser triggered
lightning in atmosphere, to measure the phase structure
of soliton molecules, and to realize the strong-field ultra-
fast coherent control [32–34]. A very accurate analytic
approximation to the transition probability has been de-
rived by using the Dykhne-Davis-Pechukas approach [36]
and a population transfer has been studied [34,35,37]. The
results show that a complete adiabatic following can be re-
alized under adiabatic condition. However, the adiabatic
transition process require a long evolution time to satisfy
the complex adiabatic condition and the fidelity of transi-
tion probability is not high [36,37].

In this paper, we study the superadiabatic population
transfer in a two-level system with a linearly chirped Gaus-
sian pulse. The superadiabatic protocol shows how the
efficiency of the transfer can be improved by adding a
suitably chosen counter-diabatic term, which aims to nul-
lify the nonadiabatic coupling and to speed up the adia-
batic dynamics. The high-fidelity requirement is achieved
and the system follows the instantaneous adiabatic ground
state near perfectly for all time. In the following section
we present the two-level model and briefly introduce the
superadiabatic quantum driving protocol. The third sec-
tion discusses how to apply the protocol to the proposed
chirped Gaussian model and study the stability of the ap-
proximate counter-diabatic field control protocol to varia-
tion of the counter-diabatic field intensity. The last section
gives the conclusions.

Model and superadiabatic protocol. – The two-
level system driven by an external coherent field is de-
scribed by the dimensionless Schrödinger equation

i
∂

∂t

(
a
b

)
= H(t)

(
a
b

)
, (1)

with the Hamiltonian given by

H(t) = γ(t)σ̂z + v(t)σ̂x, (2)

where a and b are the probability amplitudes of diabatic
states |0〉 and |1〉. The total probability |a|2 + |b|2 is con-
served and set to be 1. σ̂x and σ̂z are Pauli matrices, and

γ(t) and v(t) are the energy bias and coupling strength
between two diabatic levels, respectively.

The above system has instantaneous adiabatic eigen-
states |ψ±(t)〉,

H(t)|ψ±(t)〉 = ε±(t)|ψ±(t)〉, (3)

where the eigenvalues ε±(t) = ±
√

γ2 + v2, and the sub-
scripts − and + stand for the ground state and the excited
state, respectively. Their difference ε(t) = ε+(t)−ε−(t) =
2
√

γ2 + v2 defines the energy splitting. The Hamiltonian
can be diagonalized using the unitary transformation to a
new basis (A,B), which is the adiabatic basis, given by(

A
B

)
= U−1

0 (t)
(

a
b

)
, (4)

where U0 is the rotation matrix and can be taken as

U0 =
(
− sin θ cos θ
cos θ sin θ

)
. (5)

Here the mixing angle θ = 1
2 arctan(v(t)/γ(t)). The

Hamiltonian of the system in adiabatic basis is

H ′(t) = U−1
0 H(t)U0 − iU−1

0 U̇0, (6)

where the overdot represents the derivative with respect
to time t. The first term is the diagonal part, while the
second term is the nondiagonal part regarded as a nona-
diabatic correction. The Schrödinger equation in the adi-
abatic basis reads

i
∂

∂t

(
A
B

)
= H ′(t)

(
A
B

)
=

(
ε− −iθ̇

iθ̇ ε+

)(
A
B

)
. (7)

Adiabatic evolution takes place when the nonadiabatic
coupling in the Hamiltonian is negligible compared
to the eigenenergy splitting. Mathematically, the adia-
batic evolution requires the off-diagonal elements of the
Hamiltonian (7) to be negligible compared to the diag-
onal ones, i.e., |θ̇| � ε, which expresses the adiabatic
condition [12]. The efficiency of this transfer is limited
by the adiabatic condition, which requires slow evolution.
When the adiabatic condition cannot be fulfilled, a com-
plete population transfer does not occur due to the effect
of the nonadiabatic term in the Hamiltonian. To over-
come this one constructs an auxiliary Hamilitonian Hcd

(also called counter-diabatic field) that cancels the nona-
diabatic part of the evolution under H alone [12,13]. It
thus ensures a transitionless adiabatic following such that
the system evolving under H + Hcd always remains the
instantaneous adiabatic ground state of H with probabil-
ity 1, even for a finite duration of the protocol. In general
Hcd can be given by Hcd = iU̇0U

−1
0 . For a two-level sys-

tem of the form (1) one finds that [12,13]

Hcd(t) =
∂θ

∂t
σ̂y, (8)

where σ̂y is the Pauli matrix.
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To study the stability of the efficiency of the popula-
tion transfer driven by a variable counter-diabatic field,
we represent the total driving Hamiltonian in the form

Htot(t) = H + (1 + λ)Hcd

= γ(t)σ̂z + v(t)σ̂x + (1 + λ)θ̇σ̂y

=
(

γ(t) v(t) − i(1 + λ)θ̇
v(t) + i(1 + λ)θ̇ −γ(t)

)
, (9)

where λ represents a counter-diabatic field ratio [12].
λ = −1 corresponds to driving the system with only the
original Hamiltonian H and λ = 0 to driving the system
with the original Hamiltonian added a counter-diabatic
field. We can describe the Hamiltonian (9) as a combina-
tion of an effective coupling and a phase term

Htot(t) =
(

γ(t) veff (t) exp(−iφ)
veff (t) exp(iφ) −γ(t)

)
, (10)

where veff (t) =
√

v2(t) + ((1 + λ)θ̇)2. To eliminate the
phase dependence, we take the following transforma-
tion [17]:

U1 =
(

exp(−iφ/2) 0
0 exp(iφ/2)

)
, (11)

which again provides a new set of bases, and now the
resulting Hamiltonian becomes

Htot(t) =
(

γeff (t) veff (t)
veff (t) −γeff (t)

)
, (12)

where γeff (t) = γ(t) − φ̇/2 with φ =
arctan((1 + λ)θ̇/v(t)). This means that the effect of
the extra field can also be achieved through an appropri-
ate transformation γ → γeff and v → veff . Complete
population transfer by adiabatic following has been
realized, for instance by using the LZ model and the AE
model [23,24].

High-fidelity superadiabatic quantum driving in
chirped Gaussian model. – In this section we will
apply the superadiabatic quantum driving protocol to
the chirped Gaussian model, in which the coupling is a
Gaussian temporal shape and the energy bias is a linear
function of time [36],

v(t) = v0 exp

[
−

(
t

T

)2
]

, γ(t) = αt, (13)

where v0 is the coupling strength (or peak Rabi frequency)
and T is the pulse duration. The parameter α stands for
sweep rate (the chirp rate). We assume that the system is
initially prepared in the adiabatic ground state |ψ−(tini)〉
at time t = tini. The final state at time t = tfin is the
state |ψfin〉 after an evolution of duration tfin − tini. Our
aim is to realize the superadiabatic protocol that ensures
a perfect following of the instantanteous adiabatic ground

Fig. 1: (Color online) The time dependences of the effective
energy bias and coupling strength of different counter-diabatic
field ratios λ = −1,−0.5, 0 for (a) γeff (t)−t and (b) veff (t)−t.
Parameters: v0 = 2, α = 0.5, and T = 1.

state |ψ−(t)〉 for all time. The protocol can drive the sys-
tem from the starting state |ψ−(tini)〉 to the final state
|ψfin〉 in a speed-up way and with high fidelity, i.e., the
final state |ψfin〉 is as close as possible to the adiabatic
ground state |ψ−(tfin)〉, realizing a fidelity close to unity.
Here the fidelity function Ffin is defined as follows:

Ffin = |〈ψfin|ψ−(tfin)〉|2, (14)

which can be used to characterize the protocol efficiency.
For the chirped Gaussian model, we can obtain θ̇ =
(v̇(t)γ(t) − v(t)γ̇(t))/2(v2(t) + γ2(t)) = −αv(t)(t2/T 2 +
0.5)/(v2(t)+γ2(t)). The time dependences of the effective
energy bias and coupling strength for different counter-
diabatic field ratios are shown in fig. 1. The fidelity of the
final state are plotted fig. 2 as a function of the coupling
strength v0 in different counter-diabatic field ratios and
sweep rates. For simplicity, all the variables here should
be understood as scaled dimensionless variables. Through-
out, we use T to scale. Then, T = 1, v0 and α are in units
of 1/T and 1/T 2, respectively. In all numerical simula-
tions, the numerical time was performed from times −20
to 20.

We see that when the counter-diabatic field ratio
λ = −1, corresponding to the original chirped Gaussian
model without counter-diabatic field in the Hamiltonian
of the system, for small v0 there is a monotonic increase
of Ffin with v0. As v0 increases, Rabi-type oscillations
occur (except for very large α). With the emergence of a
counter-diabatic field, the nonadiabatic losses can be re-
duced and the oscillation amplitude decreases, regardless
of the sweep rate α. For λ = −0.5, the fidelity has been
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Fig. 2: (Color online) The fidelity of the final state as a function
of the coupling strength v0 in different counter-diabatic field
ratios and sweep rates. (a) α = 0.05, (b) α = 0.5, (c) α = 1.5,
and (d) α = 15.

Fig. 3: (Color online) The fidelity of the final state as a function
of the sweep rate α in different counter-diabatic field ratios and
coupling strength. (a) v0 = 1.5, (b) v0 = 5, (c) v0 = 15, and
(d) v0 = 50.

greatly improved. Until the counter-diabatic field ratio is
taken as 0, the nonadiabatic oscillations completely dis-
appear and the fidelity of the final state holds in 1. In
fig. 3 the fidelity of the final state is plotted vs. the sweep
rate α for different values of the coupling strength v0 and
counter-diabatic field ratio λ. The dependence of fidelity
on the α is nonoscillatory and in the case of λ = −1 there
are three distinctly different regimes. For small α, the
value of Ffin depends strongly on v0, as seen in the figure.
For moderate α, the fidelity is nearly unity. For very large
α, the fidelity decreases. If we take λ = −0.5, the fidelity
dramatically increases. When λ = 0, meaning that the
counter-diabatic field is fully implemented, the ultrahigh
fidelity is achieved in all parameter regimes. The fidelity of
the final state is further illustrated in fig. 4 vs. the counter-
diabatic field ratio λ. The counter-diabatic field greatly
enhances the transition probability and achieves a high fi-
delity. A symmetry in the fidelity arises and the maximum

Fig. 4: (Color online) Comparison of the fidelity of the fi-
nal state for various λ in the population transfer with α =
0.05, 0.5, 1.5.

Fig. 5: (Color online) Contour plots of the fidelity of the final
state as the function of the sweep rate α and the coupling
strength v0 for four different counter-diabatic field ratios λ.

values of fidelity correspond to the counter-diabatic field
ratio λ = 0 (see footnote 1).

To further investigate the effectiveness and robustness,
we show the contour plots of fidelity final state as the func-
tion of both the sweep rate α and the coupling strength v0

for four different counter-diabatic field ratios λ in fig. 5.
The blue zones correspond to low fidelity whereas red areas
indicate high fidelity. The superadiabatic driving proto-
col greatly enhances the robustness of the fidelity against
variations of α and v0 and achieves ultrahigh fidelity (the
error below the 10−4 quantum computation benchmark)
even for moderate parameter values under apparently un-
favorable adiabatic conditions.

Moreover, we define a fidelity of system as

F (t) = |〈ψ(t)|ψ−(t)〉|2, (15)

to characterize the protocol efficiency during the adia-
batic evolution process. Here |ψ(t)〉 is the actual state

1The Schrödinger equation with the total Hamiltonian (9) in the

adiabatic basis reads i ∂
∂t

`A
B

´

= H′(t)
`A
B

´

= (
ε− −iλθ̇

iλθ̇ ε+
)
`A
B

´

. It is

obvious that the system can perfectly adiabatically follow for λ = 0
and the transition dynamics are in complete symmetry for ±λ.
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Fig. 6: (Color online) The time dependences of fidelity F (t) for
different counter-diabatic field ratios with α = 0.5, v0 = 5.

of the system. If the system can adiabatically evolve
along the adiabatic ground state (adiabatic following),
then the value of the fidelity should be 1. It is evident
that F (t) = Ffin at t = tfin. The variation of the fi-
delity F (t) with time for different λ with α = 0.5, v0 = 5
is shown in fig. 6. It is obvious that the superadiabatic
protocol can be achieved for λ = 0, where the value of
fidelity holds in 1 for all the time.

Conclusions. – In conclusion, we have investigated the
high-fidelity superadiabatic quantum driving in a chirped
Gaussian two-level system with a Gaussian temporal en-
velope and a linear detuning. The protocol allows one
to suppress the nonadiabatic oscillations in the transition
probability and to enhance the fidelity of the evolution
process. The additional counter-diabatic field make it pos-
sible to readily implement the protocol ensuring a perfect
adiabatic following in shorter time. We expect that the
superadiabatic population transfer can be achieved in ex-
periment. For example, in a Bose-Einstein condensate
loaded into an accelerated optical lattice, the time de-
pendence of linearly detuning can be achieved through
a variation of the quasimomentum and the time depen-
dence of the Gaussian coupling can be controlled through
the power of the lattice laser beams [23]. The ultrahigh
fidelity, good robustness against external field parameters,
and fast quantum driving features show that the superadi-
abatic protocol is a potentially important tool for quantum
information science such as quantum computing, quantum
communication and quantum metrology [5,38].
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Muga J. G., Phys. Rev. A, 84 (2011) 013428.

[36] Vasilev G. S. and Vitanov N. V., J. Chem. Phys., 123
(2005) 174106.
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