
PHYSICAL REVIEW A 94, 022123 (2016)

Berry phase and quantum entanglement in Majorana’s stellar representation
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By presenting the evolution of a quantum state with the trajectories of the Majorana stars on the Bloch sphere,
the Majorana’s stellar provides an intuitive geometric picture to study a quantum system with high-dimensional
Hilbert space. We study the Berry phase and quantum entanglement by distributions and motions of these stars on
the Bloch sphere. It is shown that both of these unique characters of quantum state can be perfectly represented
by the Majorana stars. The former is expressed by the solid angles of Majorana star loops and the distance
between stars. For the latter, the distances between stars are also found to be a tool for measuring and classifying
the multiparticle entanglement of a symmetric multiqubit pure state. To demonstrate our theory, we study a
typical spin model which is equivalent to an interacting boson model or an interacting multiqubit system. The
self-trapping phenomenon within is also discussed via the Majorana stars.
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I. INTRODUCTION

It is well known that the evolution of an arbitrary two-
level state can be perfectly represented by the trajectory of
a point on the Bloch sphere. This geometric interpretation
seems hard to use for a quantum state in a high-dimensional
Hilbert space. Although we can map the quantum pure state to
a higher-dimensional geometric structure, this is no longer an
intuitive way to comprehend it. Luckily, the Majorana’s stellar
representation (MSR) builds us a bridge between the high-
dimensional projective Hilbert space and the two-dimensional
Bloch sphere [1]. Majorana’s insight was that we can describe
a spin-J state (which is equivalent to an n-body two-mode
boson state [2] or a symmetric n-qubit state with n = 2J ) by
2J points on the two-dimensional Bloch sphere, rather than
one point on a high-dimensional geometric structure. These
2J points are called Majorana stars of the state. Consequently,
this representation rapidly meets the increasing interest in the
high-dimensional or many-body system, such as spinor boson
gases [3–8], multiqubit system [9], and Lipkin-Meshkov-Glick
(LMG) model [10,11].

Furthermore, the MSR yields many useful insights for high-
dimensional quantum states. As one unique character of a
quantum state, the Berry phase [12] reveals the gauge structure
associated with cyclic evolution in Hilbert space [13] and has
become a central unifying concept for quantum state [14,15].
For an arbitrary two-level state, the Berry phase is simply
proportional to the solid angle subtended by the close trajectory
of a point on the Bloch sphere, whereas every star in the MSR
will trace out its own trajectory on the Bloch sphere for a cyclic
evolution of a large spin state. For example, the spin-orbit
coupling in high-spin condensates can drive the Majorana stars
moving periodically on the Bloch sphere, and forming the
so-called “Majorana spin helix” [5]. Hence, it is natural to ask
the following: can we have an explicit relation between the
Berry phase and the Majorana stars’ helixes or loops? It has
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become an interesting topic in recent years [16–20]. Hence,
one of the insights the MSR brought for a quantum state is
how to visualize the Berry phase of a large spin state by the
trajectories of stars on the Bloch sphere such as the solid angle
for the spin-1/2 state.

Except for the Berry phase, entanglement is another
important unique character of a quantum state. Especially for
the multiqubit states, the classification and measure are quite
complex [21–25]. Since a spin-J state is equivalent to a sym-
metric 2J -qubit state, the MSR naturally provides an intuitive
way to study the multiqubit entanglement. The distribution of
the Majorana stars not only reveals the relationship between
the symmetry of the state and the multipartite entanglement
measures, such as geometric measure [26–29] and Barycentric
measure [30], but also can be used to study entanglement
classes [31,32], entanglement invariants [33], and so on.
Therefore, how to connect the quantum entanglement of the
qubits to the distribution of the Majorana stars on the Bloch
sphere is another interesting task.

In a recent paper [19], we proposed a formula for the Berry
phase in MSR and established an intuitive relation between
the Berry phase and the trajectories of the Majorana stars with
the solid angles of the star loops and the distances between the
stars on the Bloch sphere. As an extension of that work, we will
detail the main result of the previous work (such as the MSR,
and the Berry phase represented by the trajectories of stars)
in this paper and extend the research to several new issues,
such as the connection between the quantum entanglement
and the distances between stars as well as the self-trapping in
the interacting two-boson system.

The paper is organized as follows. In Sec. II, we introduce
the MSR and its two equivalent interpretations via a two-mode
boson state and the symmetric pure qubit state. In Sec. III, the
formula of the Berry phase in MSR and its connection to the
distributions and motions of the Majorana stars are studied
in detail. Furthermore, the uniqueness of the star correlation
in the Berry phases distinguished from the identical particles
(boson and fermion) is discussed with some specific cases. By
investigating the situation of 2, 3, and n qubits, we establish a
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FIG. 1. Schematic illustration of stars for spin-J states on a Bloch
sphere: (a) spin-1/2 and (b) spin-2. |↑〉 (|↓〉) denotes the spin-up
(-down) state of the qubit.

relation between the distances of the stars on the Bloch sphere
and the quantum entanglement of the symmetric multiqubit
pure state in Sec. IV. In Sec. IV, a typical spin model which is
equal to an interacting boson model or an interacting n-qubit
system is studied in detail to illustrate our theory. A brief
discussion and summary are given in Sec. V.

II. MAJORANA’S STELLAR REPRESENTATION

For the well-known case of a spin-1/2 system, a generic
pure state

|ψ〉1/2 = α|↑〉 + β|↓〉, (1)

represented by the basis spin-up state |↑〉 and spin-down state
|↓〉 can be essentially defined by a complex number,

λ = α/β = tan
θ

2
eiφ, (2)

with θ ∈ [0,π ] and φ ∈ [0,2π ]. Therefore, this state can be
described by a point on the Bloch sphere with spherical coor-
dinates (θ,φ) [34] [as shown in Fig. 1(a)]. More remarkably,
Majorana has shown that there is also an elegant way to
represent a spin-J state on the Bloch sphere by 2J points
[1]. For a generic spin-J state,

|ψ〉J =
J∑

−J

Cm|Jm〉, (3)

one can establish the equation

2J∑
k=0

(−1)kCJ−k√
(2J − k)! k!

x2J−k = 0 (4)

of probability amplitudes Cm with 2J roots x1,x2, . . . ,x2j .
Similar to Eq. (2), each of the roots xk can be written as

xk ≡ tan
θk

2
eiφk , (5)

which correspond to 2J points uk = (θk,φk) on the Bloch
sphere [as shown in Fig. 1(b)]. Therefore, the spin-J state (3)
and its evolution can be depicted by these points, which are
called Majorana stars. At first appearance, this parameterizing
method of the MSR seems like it can be used for any state with

the Hilbert space of an arbitrary dimension [19]. Actually, the
MSR is essentially an embodiment of the SU(2) symmetry
and can be strictly interpreted via both a two-mode boson state
and the symmetric multiqubit pure state of carrying the same
SU(2) symmetries as a large spin state.

A. Two-mode boson state interpretation of MSR

For a spin-J system, it is known that the angular momentum
operators can be described by the creation and annihilation
bosonic operators [2]. Under Schwinger boson representation,
the basis of the spin-J system |Jm〉 is equivalent to a two-mode
boson state |n1,n2〉 with boson numbers n1 = J + m in mode
1 and n2 = J − m in mode 2. Therefore, the spin-J state (3) is
equal to a generic state of an n-dimensional two-mode boson
system,

|	〉(n) =
n/2∑

−n/2

Cmâ†( n
2 +m)b̂†( n

2 −m)√(
n
2 + m

)
!
(

n
2 − m

)
!
|∅〉B, (6)

with n = 2J and the vacuum state |∅〉B . Note that the sum
in |	〉(n) is a homogenous n-degree polynomial of bosonic
operators â† and b̂†, and it can be factorized as

|	〉(n) = C1√
n!

(â† + λ1b̂
†) · · · (â† + λnb̂

†)|∅〉B

= 1

Nn(U)

n∏
k=1

â†
uk

|∅〉B, (7)

where λk ≡ tan θk

2 eiφk are the coefficients determined by the
probability amplitudes Cm, and

Nn(U) =
[

(n + 1)!

2n

[n/2]∑
k=0

Dn
k

(2k + 1)!!

] 1
2

(8)

is the normalization coefficient with U ≡ {u1, . . . ,u2J } and
[n/2] ≡ n/2 ([n/2] ≡ (n − 1)/2) for n even (n odd) [19]. The
expression of symmetric function Dn

k [35] is

Dn
k ≡

n∑
i1=1

n∑
j1>i1

· · ·
n∗∑

ik>ik−1

n∗∑
jk>ik

(ui1 · uj1 ) · · · (uik · ujk
), (9)

where the ∗ indicates a restriction on the summations so that
all nonrepeated indices in each term take different values. The
creation operators

â†
uk

≡ cos
θk

2
â† + sin

θk

2
eiφk b̂† (10)

and the annihilation operators âuk
satisfy[

â†
ui

,â†
uj

] = [
âui

,âuj

] = 0,
[
â†

ui
,âuj

] = 〈ui |uj 〉, (11)

with

|uk〉 =
(

cos
θk

2
â† + sin

θk

2
eiφk b̂†

)
|∅〉B. (12)

Consequently, the above factorization will give out n pairs of
parameters θk,φk (k = 1, . . . ,n) which correspond to n points
uk = (θk,φk) on the Bloch sphere. Compare Eq. (7) with (6),
we can find that the coefficients λk brought by the factorization
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process can be derived as the roots of equation
n∑

k=0

(−1)kCn/2−k√
(n − k)! k!

λn−k = 0. (13)

This equation is just the star equation (4) derived by Majorana
[1].

B. Symmetric multiqubit pure state interpretation of MSR

Moreover, it is well known that the basis {|m〉} of spin J

can also be decomposed to the form of 2J qubits,

|J,m〉 =
(

2J

J + m

)−1 2J∑
i1<i2···<iJ+m

σ+i1 · · · σ+iJ+m
|∅〉Q, (14)

where (
2J

J + m

)
= (2J )!

(J + m)!(J − m)!
(15)

is the binomial coefficient indexed by 2J and J + m. σ+ik

is the Pauli raising operator for the ikth qubit, and |∅〉Q ≡
|↓↓ · · · ↓〉. Under this decomposition, the spin basis changes
into a symmetric qubit state basis. For example, the states of
the spin-1 basis are equivalent to

|11〉 = |↑↑〉, |10〉 = 1√
2

(|↑↓〉 + |↓↑〉), |1 − 1〉 = |↑↓〉.
(16)

Thus, a spin-n/2 state can be factorized as a symmetric n-qubit
pure state,

|	〉(n) =
n/2∑

−n/2

Cm

(
n

n/2 + m

)−1/2 ∑
i1<···<in/2+m

σ+i1 · · · σ+in/2+m
|∅〉Q

= C1

∑
P

(σ+P (1) + y1) · · · (σ+P (n) + yn)|∅〉Q

= 1√
n!Nn(U)

∑
P

|uP (1)〉|uP (2)〉 · · · |uP (n)〉, (17)

where

|uk〉 = cos
θk

2
|↑〉 + sin

θk

2
eiφk |↓〉 (18)

is the qubit state of star uk = (θk,φk). The normalization
coefficient Nn(U) in Eq. (7) changes into

√
n!Nn(U). If one

denotes â†|∅〉B = |↑〉 and b̂†|∅〉B = |↓〉, these spin-1/2 states
are just the states in Eq. (12). The sum

∑
P being over all

permutations P takes 1,2, . . . ,n to P (1),P (2), . . . ,P (n). By
comparing the coefficients of the last two lines in Eq. (17), we
can find that the coefficients yk satisfy

∑
P

yP (1)yP (2) · · · yP (k) =
(

n

k

)1/2
Ck−n/2√
(2J )!Cn/2

, (19)

which is exactly a direct application of Vieta’s formulas [31].
Thereby, the coefficients λk can be derived as 2J roots of
equation

n∑
k=0

(−1)kCn/2−k√
(n − k)! k!

yn−k = 0, (20)

which is identical to Eqs. (4) and (13).

These two interpretations introduced above are mathemat-
ically equivalent since they are both restrict to the SU(2)
symmetry. Therefore, the MSR provides us with an intuitive
tool to study some basic quantum effects (such as dynamics,
multiqubit entanglement, and the Berry phase) in the systems
with high-dimensional Hilbert space which possess the SU(2)
symmetry, such as a high-spin system, spin boson gases, and
symmetric multiqubit system. It is worth noting that unlike the
multiqubit entanglement, the dynamics and the Berry phase of
a quantum state are only related to the probability amplitude
Cm. Therefore, if we treat the MSR as a parameterizing
process, the MSR can be used for any state in the Hilbert
space of an arbitrary dimension [19]. For an n-dimensional
generic state

|ψ〉n =
n∑

m=1

Cm|m〉, (21)

we can still use the roots zi ≡ tan θ ′
i

2 eiφ′
i of the equation

n−1∑
l=0

(−1)lCn−lz
n−1−l

√
(n − 1 − l)!l!

= 0 (22)

to define n − 1 Majorana stars ui = (θ ′
i ,φ

′
i). These stars can

also be used to study the dynamic and the Berry phase of
|ψ〉n [36].

III. BERRY PHASE IN MSR

A. Berry phase represented by the trajectories of stars

In particular, the Berry phase is one unique character of a
quantum state which can be studied by the MSR since each
star uk will trace out an independent trajectory on the sphere
in an adiabatic cyclic evolution of the state |	〉(n) [16]. These
trajectories are cyclic or end up permuted and will form one or
more closed loops. This process will naturally accumulate a
Berry phase for |	〉(n) [12],

γ (n) =
∮

−Im(n)〈	|du|	〉(n), (23)

where the integral only depends on the geometric path in the
parameter space. For the simplest case of the spin-1/2 state,

|	〉(1) = cos
θ

2
|↑〉 + sin

θ

2
eiφ|↓〉, (24)

the Berry phase takes the form [12]

γ (1) = −1

2

∮
(1 − cos θ )dφ = −1

2
�u, (25)

where �u is the solid angle subtended by the close trajectory
of star u = (θ,φ). The Berry phase is just proportional to the
solid angle �u. Therefore, it is interesting to ask if the Berry
phase can be represented by the parameterized loops of stars
when n > 1. In Ref. [19], it was found that the Berry phase not
only includes the respective trajectories of each star, but also
related to the correlations between the stars. It can be written
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FIG. 2. Schematic illustration of solid angle �(duij ) (areas
subtended by the red solid lines) and chordal distance cij (blue solid
line).

as a sum of these two different contributions [19],

γ (n) = γ
(n)
0 + γ

(n)
C . (26)

The first part is just like the situation of spin-1/2, where

γ
(n)
0 = −1

2

n∑
i=1

�ui
(27)

is the sum of the solid angles

�ui
=

∮
(1 − cos θi)dφi (28)

subtended by the closed evolution paths of the Majorana stars
on the Bloch sphere [as Fig. 3(a) shows]. Here, we consider
the situation that all stars form their own close loops. For the
situation in which the individual star ends up permuted, we
only need to replace the loop integral symbols in Eq. (27) by
ordinary integrals since the individual star does not complete
an entire loop.

The other interesting part known as the correlation
phase,

γ
(n)
C = 1

2

∮ n∑
i=1

n∑
j (>i)

βij�(duij ), (29)

is determined by the correlations between the stars. Specif-
ically, γ

(n)
C consists of two quantities βij and �(duij ). The

former is called correlation factor [19]

βij (D) ≡ − dij

N2
n (D)

∂N2
n (D)

∂dij

, (30)

where D ≡ {dij } (i < j ) is a collection of

dij ≡ 1 − ui · uj = c2
ij /2, (31)

which is related to the chordal distance cij between two stars
ui = (θi,φi) and uj = (θj ,φj ) (see the blue solid line in Fig. 2)
and can be defined as the “distance” between the two stars. It
is easy to find that the square of the normalization coefficient
Nn(U) in Eq. (8) only contains the products of the first degrees

of dij . For example,

N2
2 (D) = 1

2
(3 + u1 · u2) = 1

2
(4 − d12),

N2
3 (D) = 3 + u1 · u2 + u2 · u3 + u3 · u1

= 6 − d12 − d23 − d13,

N2
4 (D) = 15

2
+ 5

2

4∑
i<j

ui · uj + 1

2

4∑
i<j,k<l

(ui · uj )(uk · ul)

= 5 + 5

2

4∑
i<j

dij + 1

2

4∑
i<j,k<l

dij dkl . (32)

It indicates that the normalization coefficient can be written as

N2
n (U) = −dij

∂N2
n (U)

∂dij

+ terms without dij . (33)

Therefore, the correlation factor βij (D) is just the weight of
the dij -dependent terms to N2

n (D), i.e., the contribution of dij

to N2
n (D).

The other quantity

�(duij ) ≡ ui × uj · d(uj − ui)/dij (34)

in γ
(n)
C can be defined as the sum of solid angles of the infinite

thin triangles (ui ,−uj ,−uj − duj ) and (uj ,−ui ,−ui − dui)
for stars ui = (θi,φi) and uj = (θj ,φj ) [see the areas sub-
tended by the red solid lines in Fig. (2)]. This solid angle
seems hardly related to the motions of stars. To start with, we
consider a simple situation with stars u1 = (0,0), u2 = (θ,φ),
where the solid angle becomes

�(duij ) = u1 × u2 · du2

1 − u1 · u2
= (1 + cos θ )dφ, (35)

which is the double of the solid angles subtended by the closed
trajectory of u2. Considering this situation, we can divide the
motions of the two stars ui = (θi,φi) and uj = (θj ,φj ) into
their absolute motions and the relative motions between them.
Specifically, we can use a rotation

Ti =
⎛
⎝cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi

⎞
⎠

⎛
⎝ cos φi sin φi 0

− sin φi cos φi 0
0 0 1

⎞
⎠
(36)

to establish a moving frame in which the star ui = (θi,φi)
is fixed and located at z axis Z = (0,0), and uj = (θj ,φj ) is
rotated to u′

j (i) = (θ ′
j (i),φ

′
j (i)) accordingly with [see Fig. 3(b)]

θ ′
j (i) = arccos[cos θi cos θj + sin θi sin θj cos(φi − φj )],

φ′
j (i) = arctan

[ − sin θj sin(φi − φj )

− cos θj sin θi + sin θj cos θi cos(φi − φj )

]
,

(37)

or, equivalently, fix uj = (θj ,φj ) onto Z = (0,0), and ui =
(θi,φi) becomes u′

i(j ) = (θ ′
i(j ),φ

′
i(j )) [see Fig. 3(c)] with

θ ′
i(j ) = arccos[cos θi cos θj + sin θi sin θj cos(φi − φj )],

φ′
i(j ) = arctan

[ − sin θi sin(φj − φi)

− cos θi sin θj + sin θi cos θj cos(φj − φi)

]
.

(38)
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FIG. 3. A schematic illustration of (a) the absolute motions of
ui = (θi,φi) and uj = (θj ,φj ) and the relative motions (b) uj (i), and
(c) ui(j ) between the two stars (see also Fig. 1 in Ref. [19]).

In these two moving frames, we can study the relative motion
of ui (uj ) to uj (ui), respectively [as Figs. 3(b) and 3(c) show].

Considering these relative motions, the solid angle �(duij )
in Eq. (34) becomes [19]

�(duij ) = (dφ′
i(j ) + dφ′

j (i)) + (cos θidφi + cos θjdφj ),
(39)

where θ ′ = θ ′
j (i) = θ ′

i(j ) is the angle between ui and uj . Note
that the solid angle subtended by the closed trajectory of a star
u = (θ,φ) is

�(u) =
∮

(1 − cos θ )dφ. (40)

Therefore, the geometric meaning of Eq. (39) can be found as
the solid angles subtended by the close trajectories of the two
stars ui , uj , and the solid angle related to the relative motions
between these two stars [19]. Consequently, the correlation
phase γ

(n)
C can be understood as the collection of the weighted

relative evolutions between the stars,

γ
(n)
Rij ≡ 1

2

∮
βij (D)

�(du′
i(j )) + �(du′

j (i))

1 − ui · uj

, (41)

with �(du′
i(j )) = (1 − cos θ ′)dφ′

i(j ) and the collection of the
weighted absolute evolutions of the pairs of stars,

γ
(n)
Aij ≡ 1

2

∮
βij (D)(cos θidφi + cos θjdφj ). (42)

Namely,

γ
(n)
C =

n∑
i=1

n∑
j (>i)

(
γ

(n)
Rij + γ

(n)
Aij

)
. (43)

Therefore, the Berry phase in MSR consists of not only the
solid angles subtended by the close trajectories of the stars,
but also a correlation part consisting of the weighted solid
angles subtended by the absolute motion of every star and the
relative motion between each pair of stars. These correlation
part stems from the nonorthogonality of two qubit states of
stars. In other words, the commutation relation between the
boson operators â

†
ui

and âuj
is 〈ui |uj 〉, not δij . This is different

from the ordinary identical particles. For n bosons or fermions,
the Berry phases for their symmetric (antisymmetric) many-
body states are sums of the Berry phases for their single-

particle states. There will be no correlation between the single-
particle states.

B. Some specific cases for the Berry phase γ (n)

So far, we have derived several formulas of the Berry phase
in MSR. To illustrate these formulas, we discuss some specific
situations for γ (n). The simplest state in MSR is that all the
stars locate on one single point. The corresponding state

|	〉(n) = |uα〉|uα〉 · · · |uα〉 (44)

has n coincident stars uα = (θα,φα), which is equal to the spin
coherent state [17,30]

|α〉J = eαĴ+ |j,−j 〉, (45)

with a complex coefficient α = tan θα

2 eiφα . In this situation, the
stars have no correlation between each other. Therefore, the
Berry phase in γ (n) will be reduced to the sum of solid angles
of all stars,

γ (n) = −n

2
�ui

. (46)

Another typical situation is a spin J in a uniform magnetic
field B = B(sin θ cos ϕ, sin θ cos ϕ, cos θ ), which has eigen-
states

|Em〉(2J ) = e−iĴz e−iĴy θ eiĴzϕ|Jm〉

= e−iĴz e−iĴy θ eiĴzϕ â
†(J+m)
↓ â

†(J−m)
↑√

(J − m)!(J + m)!
|∅〉B. (47)

Using relations

eiϕĴZ â
†
↑↓e−iϕĴZ = e±iϕ/2â

†
↑↓,

eiθĴy â
†
↑↓e−iθ Ĵy = cos

θ

2
â
†
↑↓ ∓ sin

θ

2
â
†
↓↑, (48)

it becomes

|Em〉(2J ) = e−iϕ/2

√
(J − m)!(J+m)!

(
cos

θ

2
â
†
↑+ sin

θ

2
eiϕâ

†
↓

)J+m

×
(

sin
θ

2
â
†
↑ − cos

θ

2
eiϕâ

†
↓

)J−m

|∅〉. (49)

Hence, |Em〉(2J ) has J + m coincident stars u = (θ,ϕ) and
their J − m coincident antipodal stars u′ = (π − θ,π + ϕ)
with u × u′ = 0. The Berry phase thus becomes [19,37]

γ (2J ) = γ
(2J )
0 = − 1

2 [(J + m)�u − (J − m)�u′] = −m�u.

(50)
Furthermore, there is a special situation that all the distances

between stars are invariant, i.e., all the stars rotate with the
same angular velocity as a rigid body. Since the correlation
factors βij become constants in this situation, the correlation
phase γ

(n)
C in Eq. (29) changes into a sum of weighted solid

angles as

γ
(n)
C = 1

2

n∑
i=1

n∑
j (
=i)

βij�(uij ), (51)
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u1

u2

u3 u4

FIG. 4. Schematic illustration of stars on the same circle of
longitude (blue dots on the blue circle) or latitude (red dots on the red
circle).

where

�(uij ) ≡
∮

�(duij )

=
∮

({dφ′
i(j ) + dφ′

j (i)) +
∮

(cos θidφi + cos θjdφj )

=
�u′

i(j )
+ �u′

j (i)

1 − ui · uj

− [(�ui
+ �uj

)mod(2π )], (52)

with the solid angles �u′
i(j )

(�u′
j (i)

) subtended by the closed
evolution paths of u′

i (u′
j ) relative to uj (ui), respectively.

Therefore, �(uij ) is composed of the solid angles accumulated
by the relative evolution between ui and uj [as Figs. 3(b)
and 3(c) show], and the solid angles accumulated by the
evolutions of ui and uj themselves [as Fig. 3(a) shows].

There is also a special case which can distinguish the two
parts γ

(n)
Rij and γ

(n)
Aij of a star pair ui and uj . That is the two

stars keeping on the same circle of longitude or latitude as
shown in Fig. 4. The former means that the two stars and
the z axis Z = (0,0) will always be on the same big circle
of the Bloch sphere (with φi − φj = 0,±π ; see the blue dots
on the blue circle in Fig. 4). Therefore, the relative motions
between the two stars are always on this circle, and hence
accumulate no loop. Consequently, γ

(n)
Rij will vanish. For the

latter, we have θ1 = θ2 (see the red dots on the red circle in
Fig. 4), which indicates that φ′

i(j ) = (2π + φi − φj ) mod 2π

and φ′
j (i) = 2π + φj − φi mod 2π , Therefore, we have

dφ′
i(j ) + dφ′

j (i) = d(2π ) = 0. (53)

γ
(n)
Rij will also vanish in this case.

IV. CORRELATIONS BETWEEN STARS
AND QUANTUM ENTANGLEMENT

In the study of the Berry phase above, the distance dij

between two stars ui and uj is found to play a key role. More-
over, since a spin-n/2 state is equal to a symmetric n-qubit
pure state, these n(n − 1)/2 correlations or distances between
stars in MSR may also be connected to the entanglement of the
n qubits. In particular, the symmetry of the star constellation
has been proven to be an efficient tool to study the geometric

measure of multiqubit entanglement [26,27,38], which also
inspired an entanglement measure based on the barycenter of
stars. Furthermore, the entanglement of the multiqubit is also
found to be classified into different stochastic local operations
and classical communication (SLOCC) classes by Majorana
stars [31,32]. For example, the entanglement of three qubits
has three inequivalent classes [23,24]. Thus, these correlations
between stars in MSR can be taken as a different perspective
for the entanglement classification and the measure of each
class. Relating the constellation of stars and the measure of
entanglement (such as in Ref. [26]) for each class should be an
interesting task. To address this issue, we first study the cases
with two and three qubits and then generalize the results to the
case with n qubits.

A. Two qubits

For two qubits, a generic symmetric pure state in MSR can
be factorized as

|	〉(2) = C1|↑↑〉 + C0(|↑↓〉 + |↓↑〉) + C−1|↓↓〉
∼ 1√

2N2(U)
(|u1〉|u2〉 + |u2〉|u1〉), (54)

where N2(U) = √
(3 + u1 · u2)/2 is the normalization con-

stant, Cm are the probability amplitudes (m = 1,0,−1), and

|u1〉 = cos
θ1

2
|↑〉 + sin

θ1

2
eiφ1 |↓〉,

|u2〉 = cos
θ2

2
|↑〉 + sin

θ2

2
eiφ2 |↓〉

(55)

are the qubit states of star u1 = (θ1,φ1) and u2 = (θ2,φ2),
respectively.

For two-qubit entanglement, a conventional measure is the
concurrence [39]. In our situation, it reads

C = 2
∣∣C2

0 − C1C−1

∣∣ = d12

2N2
2 (U)

, (56)

with d12 = 1 − u1 · u2. Compared with Eq. (30), the concur-
rence C is simply the correlation factor for |	〉(2),

β12 = C = d12/N
2
2 (U). (57)

Thus, the entanglement between the two qubits is determined
only by the distance dij between the two stars u1 and u2. It is
easy to find that if the symmetric state in Eq. (54) is separable
(the two qubits are not entangled), the two stars must overlap
on one point, i.e., u1 = u2 = u. The state |	〉(2) then takes the
form

|	〉(2) = |u〉|u〉, (58)

while the two qubits will be maximal entangled with C = 1
when the two stars are symmetrical about the center of the
Bloch sphere. The state |	〉(2) becomes

1√
2

(|u〉|−u〉 + |−u〉|u〉) (59)

where the two-qubit states are orthogonal, i.e., 〈u| − u〉 = 0.
Without loss of generality, we take u1 = (0,0) and u2 =

(θ,0) as an example. The concurrence and the trajectory of
u2 are show in Fig. 5. When θ = 0, the two-qubit state
|	〉(2) = |↑↑〉 is separable and two stars coincide on the north
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FIG. 5. (a) The concurrence C as a function of θ ; (b) the
trajectories of u1 (red dot) and u2 (blue solid line) as θ changes
in (a).

pole of the Bloch sphere [as shown in Fig. 5(b)]. There
is no entanglement between the two qubits. As θ changes,
the concurrence C increases monotonically with increasing
distance d12. When θ = π , |	〉(2) becomes one of the Bell
states (maximal entangled),

|	〉(2) = 1√
2

(|↑↓〉 + |↓↑〉). (60)

So far, the distance between two stars is related to the en-
tanglement between two qubits. Significantly, the correlation
between qubits can be perfectly represented by the correlation
between stars. Moreover, if we substitute Eq. (57) into Eq. (29),
the correlation phase γ

(2)
C becomes

γ
(2)
C = 1

2

∮
u1 × u2 · (du2 − du1)

3 + u1 · u2
= 1

2

∮
C�(du12), (61)

which means that the one from the connection of the correla-
tion phase is a product of the concurrence C and the solid angle
�(du12). This entanglement-dependent holonomic phase has
become an interesting topic in recent years [40].

B. Three qubits

For three qubits, a symmetric pure state in MSR takes the
form

|	〉(3) = C 3
2
|↑↑↑〉 + C 1

2
(|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉)

+C− 1
2
(|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉) + C− 3

2
|↓↓↓〉

∼ 1√
6N3(U)

(|u1〉|u2〉|u3〉 + |u1〉|u3〉|u2〉

+ |u2〉|u1〉|u3〉 + |u2〉|u3〉|u1〉
+ |u3〉|u1〉|u2〉 + |u3〉|u2〉|u1〉), (62)

with probability amplitudes Cm (m = 3/2,1/2,−1/2,−3/2),
stars u1 = (θ1,φ1), u2 = (θ2,φ2), u3 = (θ3,φ3),
and the normalization coefficient N3(U) =√

3 + u1 · u2 + u2 · u3 + u3 · u1.
The entanglement of three qubits is more complex than that

of two qubits [21–23]. Since three qubits can be entangled
in two inequivalent ways, the three-qubit pure state can be
classified into four different types [23]: (i) the class S of
separable states; (ii) the class B of a bipartite entangled state,

e.g., |↓〉(α|↑↑〉 + β|↓↓〉); (iii) the class W of W states [23],

|W 〉3 = 1√
3

(|↑↓↓〉 + |↓↑↓〉 + |↑↑↓〉); (63)

and (iv) the class GHZ of GHZ states [41],

|GHZ〉3 = 1√
2

(|↓↓↓〉 + |↑↑↑〉). (64)

States in these classes can be converted into each other under
the SLOCC if and only if they are in the same class [23]. It
can be enforced by the fact that two states are equivalent under
SLOCC if an invertible local operation (ILO) relating them
exists [23,26]. For symmetric pure states |	〉(3), the bipartite
entangled states are absent due to the permutation symmetry of
the qubits. Therefore, we have three classes for the symmetric
pure three-qubit states: the separable class, the W class, and the
GHZ class. Furthermore, the permutation symmetry makes the
search for these ILOs easier. Specifically, if two state |ψ〉3 and
|φ〉3 belong to the same SLOCC class, we can find a symmetric
ILO which satisfies [31,32]

|φ〉3 = A ⊗ A ⊗ A|ψ〉3, (65)

with the same invertible operator A on each qubit.
For three coincident stars, the separable state takes the form

|S〉3 = |u〉|u〉|u〉. (66)

Obviously, the state remains separable under any invertible
operator AS .

For two coincident stars, the state (62) can be written as

|ψW 〉3 = 1√
6N3(U)

(|u2〉|u1〉|u1〉 + |u1〉|u2〉|u1〉

+ |u1〉|u1〉|u2〉), (67)

with u3 = u1 and N3(U) = √
4 + 2u1 · u2. We can always

find an invertible operator AW transforming |u1〉 into |↑〉 and
|u2〉 into |↓〉 with

AW ≡
(

cos θ1
2 cos θ2

2

sin θ1
2 eiφ1 sin θ2

2 eiφ2 .

)−1

. (68)

Therefore, this type of state can be transformed into the W
state (63).

For three separated stars u1, u2, and u3 of the state |	〉(3),
an invertible operator AG can also be determined by [31]

e√
2

(|↑〉 + |↓〉) = AG|u1〉,

f√
2

(|↑〉 + ei2π/3|↓〉) = AG|u2〉,
g√
2

(|↑〉 + ei4π/3|↓〉) = AG|u3〉, (69)

with three complex numbers e, f , and g satisfying efg =
1. Thus, the state |	〉(3) with three separated stars can be
transformed into the GHZ state |GHZ〉3 by the ILO AG ⊗
AG ⊗ AG.

Moreover, an invertible operator A cannot transform two
different qubit states into the same one, which means that
an ILO cannot change the number of unequal stars. Thus,
the dimension of the star constellation is unchanged under an

022123-7



H. D. LIU AND L. B. FU PHYSICAL REVIEW A 94, 022123 (2016)

ILO [31,42]. Therefore, we can find three different classes
of states with different numbers of unequal stars which can
be transformed into a separable state, W state, and GHZ state,
respectively. This indicates that the classes of the entanglement
can be determined by the number of unequal stars. Since we
have confirmed the classification of the entanglements, the
next task is to find the relation between the distribution of
stars and the entanglement measure for each type.

For a GHZ type of states, a valid measure of the entangle-
ment is the three-tangle [21]. To our symmetric state (62), it
takes the form

τ = 4
∣∣(C 3

2
C− 3

2
−C 1

2
C− 1

2

)2−(
C2

1
2
−C 3

2
C 1

2

)(
C2

− 1
2
− C− 3

2
C− 1

2

)∣∣
= 2d12d23d31

3N4
3 (U)

, (70)

where the distance dij = 1 − ui · uj . Like the entanglement of
two qubits, the 3-tangle can also be represented by the product
of the distances between the stars. For the GHZ state (64),
we have τ = 1. The three qubits are maximally entangled
with three stars u1 = (π/2,0), u2 = (π/2,2π/3), and u3 =
(π/2,4π/3) distributing evenly on the equator of the Bloch
sphere. Obviously, to ensure τ has nonzero value, the three
stars should be separated from each other.

For τ = 0, there are two situations: all three stars coincide
on one point and two of the three stars are coincident, which
corresponds to the two classes left: S class and W class. Similar
to the situation of two qubits, the symmetry requires three
coincident stars for the separable type of state |S〉3. Obviously,
the situation of two coincident stars is related to the W type of
states. Its entanglement can be measured by the concurrence
of the mixed state derived by tracing over any qubit from the
density matrix of the symmetric three-qubit pure state [21],
and the concurrence

C12 = 2(1 − u1 · u2)

3(4 + 2u1 · u2)
= 2d12

3N2
3 (U)

(71)

is essentially equivalent to the concurrence (56), except
for its maximal value 2/3. This means that the W-type
states are reduced to “two-qubit entanglement” (concur-
rence). Accordingly, the correlation phase γ

(3)
C satisfies γ

(3)
C =

3
2

∮
�(du12)C12, which is similar to Eq. (61). In brief, these

three classes of entanglement S class, W class, and GHZ class
can be represented by three kinds of star distributions on the
Bloch sphere: three stars coincide on one point [see Fig. 6(a)],
two of the three stars coincide on one point [see Fig. 6(b)], and
the three stars are separated from each other [see Fig. 6(c)],
respectively.

To illustrate these three types of states, we take the
symmetric three-qubit states |ψ3〉 with stars u1 = (θ,0), u2 =
(π − θ,φ/2), and u3 = (π − θ,2π − φ/2) as an example. Its
three-tangle τ are shown in Fig. 7. For θ = 0 or ψ = 0, we
have zero-valued τ ; these states |ψ3〉 thus belong to the W type,
such as the W state (63) with θ = 0, the Dicke state

|S(3,2)〉 = 1√
3

(|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉) (72)

with θ = π , and a local unitary operated W state

|W̃ 〉 = eiθσ̂y/2 ⊗ eiθσ̂y/2 ⊗ eiθσ̂y/2|W 〉 (73)

FIG. 6. Schematic illustration of stars on the Bloch sphere for the
three types of entanglement for the symmetric three-qubit pure state:
(a) S type, (b) W type, and (c) GHZ type.

with φ = 2π , which has the stars u1 = (θ,0) and its two over-
lapped antipodal stars −u1 = (π − θ,π ). When θ changes,
these two noncoincident stars will always keep a maximal
distance, and hence this W-type state always has the maximal
entanglement C = 2/3 as the W state [see the green line in
Fig. 7(a) and the third sphere in Fig. 7(c)]. This can be
explained by the fact that a local unitary transformation can be
treated as a rotation of the total constellation (or, equivalently, a
rotation of the Bloch sphere [27,42]) and hence cannot deform
the constellation. Therefore, a local unitary operation leaves
the distances between stars unchanged and cannot change the
entanglement degree of the state.

FIG. 7. (a) Three-tangle of symmetric three-qubit states |φ(θ,φ)〉3

with stars: (θ , 0), (π − θ , φ/2), and (π − θ , 2π − φ/2).
(b) Concurrence of symmetric three-qubit W-type state |φW 〉3. (c)
The trajectories of stars for the W-type state |	W 〉3, GHZ-type state
|ψG〉3, and W-type state |W̃ 〉 as θ changes from 0 to π .
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For φ = 0, we have the W-type state |ψW 〉3 in Eq. (67) with
star u2 = (θ,0) and two coincident stars u1 = u3 = (π − θ,0).
As θ changes from 0 to π , u1 travels from the north pole to
the south pole of the Bloch sphere and the other two stars
travel from the south pole to the north pole. Their distances
are determined by d12 = 1 + cos(2θ ) and the concurrence C
becomes

C = 1 + cos(2θ )

3[2 − cos(2θ )]
. (74)

When θ = 0 and θ = π , the W-type states will have the
maximal entanglement C = 2/3 (see Fig. 7) and become the
W state |W 〉3 (with two stars on the south pole and one star on
the north pole) and the Dicke state |S(3,2)〉 (with one star on
the south pole and two stars on the north pole), respectively.
Moreover, when θ = π/2, the three stars coincide on one point
u = (π/2,0), and the state |ψW 〉3 becomes a separable state,

|S〉3 = 1

2
√

2
(|↑〉 + |↓〉)(|↑〉 + |↓〉)(|↑〉 + |↓〉), (75)

which corresponds to a zero C (see Fig. 7).
When θ 
= 0 and φ 
= 0, τ has nonzero values. In this

situation, |ψ3〉 belongs to the GHZ type. Taking φ = 4π/3
as an example, as θ changes from 0 to π , the state evolves
from the W state to the Dicke state |S(3,2)〉. All of the states
among these two points are GHZ-type state |ψG〉3 with stars
u1 = (θ,0), u2 = (π − θ,3π/2), and u3 = (π − θ,4π/2) [see
the yellow line in Fig. 7(a) and the second sphere in Fig. 7(c)].
Especially when θ = π/2, |ψG〉3 becomes the |GHZ〉3 state
(64) with three evenly distributed stars on the equator of the
Bloch sphere [see the black point in Fig. 7(a) and the second
sphere in Fig. 7(c)].

We find that the three different types of symmetric three-
qubit pure states can be classified and measured by the distance
between stars: the separable states have three coincident stars,
the states of the GHZ class have three separated stars which
can be measured by three-tangle, and the state of the W class,
which has two coincident stars, does not have “three-qubit
entanglements” (three-tangles) and their entanglements are
reduced to “two-qubit entanglements” (concurrences).

C. n qubits

In the last two subsections, it has been found that the entan-
glements of symmetric pure states with two and three qubits are
related to the distances between stars. The entanglement types
can be classified by the number of unequal stars (or diversity
degree of the state [31]), and measured by a normalized product
of the distance between unequal stars [product of distances
divide a normalization coefficient, such as three-tangle (70)
and concurrence (56) and (71)]. For n(>3) qubits, both the
MSR and the measure of multiqubit entanglement are complex
[27,30,31,33]. However, it can be proven that the entanglement
types can still be classified by the number of unequal stars ns

[31], such as S type (ns = 1), W type (ns = 2), and GHZ type
(ns = n). Next, we begin with some classical types of states
and then discuss the multiqubit entanglement.

The simplest case is where the state |S〉 is separable, and
the symmetry of the symmetric n-qubit pure state requires that
all the stars of |S〉 should be overlapped on one point uS (see

uG4 uG3

uB(m+1,  ..., n)

Stars of Dicke state
Stars of S state

Stars of GHZ state
Stars of spin in B

uuG4 uuGG33

uuB(mB(m+1,  ..., n., n)n)

S
St

uG2uG1uGn

uD (1, 2, ..., m)

uB(1, 2, ..., m)

uD (m+1, m+2, ..., n)

uS(1, 2, ..., n)

FIG. 8. Stars of several n-qubit states: separable states (red point),
Dicke state (green points), GHZ state (blue points), and states of
spin-J in magnetic field (purple points).

the red star in Fig. 8). Therefore, |S〉 takes the form

|S〉 = |uS〉|uS〉 · · · |uS〉, (76)

which is just equal to the coherent state (45) with one
overlapped star, uS = (θS,�S). For the W type with two
unequal stars, a typical state is the Dicke state (including the
W state when m = 1),

|S(n,m)〉 =
∑
P

| ↑↑ . . . ↑︸ ︷︷ ︸
m

↓↓ . . . ↓︸ ︷︷ ︸
n−m

〉, (77)

where
∑

P denotes taking over all permutations of spin up
↑ and spin down ↓. |S(n,m)〉 can be represented by m stars
on the north pole and n − m stars on the south pole (see the
green squares in Fig. 8). Another kind of W-type states is
the eigenstates of a spin n/2 in a uniform magnetic field in
Eq. (47), which is equal to

|Em〉(n) =
∑
P

|u〉|u〉 . . . |u〉︸ ︷︷ ︸
n/2+m

|−u〉|−u〉 . . . |−u〉︸ ︷︷ ︸
n/2−m

, (78)

with J + m coincident stars u = (θ,ϕ) and their J − m co-
incident antipodal stars −u = (π − θ,π + ϕ) (see the purple
diamonds in Fig. 8).

For a generic W-type state, |	2〉(n) with m stars u1(θ1,φ1)
and n − m stars u2 = (θ2,φ2) since the rotating operation does
not change the distance between the two unequal stars. Without
loss of generality, we chose u1 = (0,0) and u2 = (θ,0), where
θ = arccos(u1 · u2) is the angle between u1 and u2. By tracing
out any n − 2 qubits from the density matrix (n)〈	2|	2〉(n), we
obtain the reduced density matrix of the left two qubits. After
a straightforward calculation, its concurrence reads

Cn
12 = (n − 2)!m(n − m)(1 − cos θ )

nN2
n (U)

= (n − 2)!m(n − m)d12

nN2
n (U)

, (79)

which is in accordance with the results (56) for two qubits
(n = 2, m = 1) and (71) for three qubits (n = 3, m = 1). Since
the distance dij is inversely correlated to the normalization
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coefficient N2
n (U), the concurrence Cn

12 is a monotonic function
of dij . For the Dicke states |S(n,m)〉 and the state |Em〉(n),
which have the maximal-distanced two unequal stars and
N2

n (U) = n!(n − m)!, their entanglements reach the maximal
value,

Cn
max = 2

n

(
n − 2
m − 1

)
, (80)

which matches the resultsC = 1 for two qubits andC = 2/3 for
the W type of three qubits. Therefore, the Dicke states |S(n,m)〉
and the state |Em〉(n) are the maximal-entangled W-type states.

For the GHZ type, all the stars are separated from each
other. For example, the GHZ state

|GHZ〉n = |↑↑ . . . ↑〉 + eiφ|↓↓ . . . ↓〉 (81)

has n separated stars uk = (π/2,φ + 2π/k) (k = 0,1, . . . ,n −
1) distributing evenly on the equator of the Bloch sphere and
is a maximal-entangled GHZ-type state.

So far, it is known that the type of entanglement can
be classified by the number of unequal stars, and can be
measured by the product of distance between stars. Therefore,
the normalized product of the distances between unequal stars,⎛

⎜⎜⎜⎝
ns∏

i,j = 1
i < j

dij

⎞
⎟⎟⎟⎠/N2(ns−1)

n , (82)

may be a valid measure of entanglement.

V. TWO-MODE INTERACTING BOSON SYSTEM

To illustrate our theory, we consider a typical model with
Hamiltonian

H = Ĵ · R + λĴ 2
z , (83)

where R = (sin θ cos ϕ, sin θ cos ϕ, cos θ ), and Ĵ = (Ĵx,Ĵy,

Ĵz) is the spin-J vector. This model exhibits rich physics and
can interpret many typical systems. For example, an interacting
boson system [10,43] with the Hamiltonian

HBS = R sin θ

2
(eiϕâ†b̂ + e−iϕ b̂†â) + R cos θ

2
(â†â − b̂†b̂)

+ λ

4
(â†â − b̂†b̂)2, (84)

which can be derived from the bosonic-field Hamiltonian
[43], has received extraordinary attention in the literature on
BECs [44]. The parameters R cos θ can be considered as the
energy offset between the two modes, R sin θeiϕ measures
the coupling between the two modes, λ = g/V with g is the
interaction strength between bosons, and V is the volume of
the system. Furthermore, this mode can also be treated as an
interacting n-qubit system for [45]

Ĵα = 1

2

n∑
k=1

σ̂kα, α = x,y,z, (85)

where σ̂kα are the Pauli matrices for the kth particle.

FIG. 9. The trajectories of the Majorana stars with λ = 0 (blue
loops on the spheres) and λ/R = 0.9 (red loops on the spheres) for (a)
ground state |E1〉(2) of H(BS) with two bosons, (b) ground state |E1〉(3),
and (c) the first excited state |E2〉(3) of three bosons. The evolution of
θ and ϕ in parameter space is the same as Fig. 2 in Ref. [19].

A. Berry phase and entanglement

For λ = 0, the Hamiltonian H(BS) describe the model of a
spin n/2 in a magnetic field R whose eigenstates are shown in
Eq. (49). Therefore, there are m coincident stars u = (θ,ϕ) and
their n − m coincident antipodal stars −u = (π − θ,π + ϕ)
for the mth eigenstate |Em〉(n). Accordingly, its Berry phase
γ (n) becomes

γ = (n − 2m)�u, (86)

e.g., 2�u for the ground state |E1〉(2) with two bosons
[subtended by the blue loop of u = u1,2 in Fig. 9(a)], 3�u for
the ground state |E1〉(3) of three bosons [subtended by the blue
loop of u = u1,2,3 in Fig. 9(b)], and �u for the first excited
state |E2〉(3) of three bosons [subtended by the blue loop of
u = u1,2 = −u3 in Fig. 9(c)], respectively. Furthermore, the
equivalent symmetric n-qubit pure state of |Em〉(n) has already
been proven to be a maximal-entangled W-type state with

Cn
max = 2

n

(
n − 2

m − 1

)
. (87)

For nonzero λ, the eigenproblem is hard to solve [10].
However, if we take λ as a perturbation (λ � 2R) in the
simplest case of two bosons (or spin 1, or two qubits),
the eigenproblem of H(BS) can be solved analytically with
eigenvalues E = −R, 0, or R under first-order approximation.

Correspondingly, the two stars u1 = (θ1,φ1) and u2 =
(θ2,φ2) of the eigenstate |E0〉 for E0 = 0 are determined by

θ1 = 2 arctan

(
R cos θ + √

R2 − λ2 sin2 θ cos2 θ

(R − λ cos θ ) sin θ

)
,

φ1 = π + ϕ;

θ2 = 2 arctan

(−R cos θ + √
R2 − λ2 sin2 θ cos2 θ

(R − λ cos θ ) sin θ

)
,

φ2 = ϕ, (88)

which is just the situation in which the two stars are on the same
circle of longitude, like the blue dots on the blue circle in Fig. 4.
Suppose the system evolves adiabatically with parameters θ

and ϕ; the two parts of the Berry phase γ (n) can thus be written
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as

γ
(2)
0 = −1

2
(�u1 + �u2 ) =

∮ (
−1 + λ cos θ sin2 θ

R

)
dϕ,

γ
(2)
C = γ

(2)
Aij = 1

2

∮
C(cos θ1dφ1 + cos θ2dφj2), (89)

where

C = 4R2 − λ2 sin2 2θ

4R2 + λ2 sin2 2θ
(90)

is the concurrence for the equivalent symmetric two-qubit
states,

|	〉(2) = 1√
3 + u1 · u2

(|u1〉|u2〉 + |u2〉|u1〉), (91)

of |E0〉. When the coupling constant λ = 0, the two stars are
antipodal with each other, which makes |	〉(2) a maximal
entangled state. In this case, we have �u1 = −�u2 and
γ

(2)
C = 0, and there is only a trivial Berry phase (0 or 2π ).

For more general situations of nonzero λ, we can nu-
merically calculate the parameter-dependent eigenstates of
H . Similar to the results of the LMG model in Ref. [10],
the instantaneous eigenstate of H has two groups of stars
spreading over two curves on the Bloch sphere, respectively.
The mth eigenstate |Em〉(n) has n + 1 − m on one curve and
m − 1 on the other curve [10,19].

As the adiabatic parameters evolve, the time-dependent
eigenstates vary accordingly. Since the existence of λ makes
the stars separate from each other, their trajectories become
several separated loops (see the red loops in Fig. 9) and the
correlation phases arise. However, the phase γ

(n)
R caused by the

relative motions between stars will vanish due to the symmetry
between the stars on the two curves. For example, the stars for
|E1〉(2), |E1〉(3), and |E2〉(3) will always locate on the same
circle of longitude, as shown by the green lines in Fig. 9.

In addition, we can also see the different entanglement
classes of the equivalent two- and three-qubit pure states, e.g.,
the S type and W type of two qubits with coincident stars
and separated stars, respectively [as shown in Fig. 9(a), and
the S type, W type, and GHZ type of three qubits with three
coincident stars, two coincident stars, or three separated stars,
respectively [as shown in Figs. 9(b) and 9(c).

B. Self-trapping in MSR

In addition to the adiabatic evolution and quantum entan-
glement, the dynamics of the system with Hamiltonian (83)
or (84) is also an interesting issue that can be observed by
the Majorana stars. Especially for φ = 0 and θ = π/2, this
Hamiltonian can be used to describe the model for two-mode
Bose-Einstein condensates (BECs) coupled via Josephson
tunneling [44,46,47]. The Hamiltonian takes the form

H2 = λ

4
(na − nb)2 + R

2
(â†b̂ + b̂†â), (92)

where na = â†â and nb = b̂†b̂ are the number operators for
the two-mode condensates a and b, respectively, and the total
boson number n = na + nb is conserved.

A well-known dynamics effect of this system is that the
oscillation of the BECs between the two wells will change from

Z
Y

nλ/R=0 nλ/R=0.1 nλ/R=2.1 nλ/R=10

0 5 10 15 20
−1

−0.5

0

0.5

1

t

〈n
a-
nb

〉/n
FIG. 10. The trajectories of Majorana stars and the time evolution

of the relative number of expectation values with different nonlinear
strengthes: nλ/R = 0 (green thick solid line), nλ/R = 0.1 (black
dashed line), nλ/R = 2.1 (blue dash-dotted line), and nλ/R = 10
(red thin solid line) with the total boson number n = 10.

delocalization into self-trapping as the nonlinearity strength
increases [44,46–49]. If we choose |n,0〉 as the initial state,
i.e., all the bosons are located in well a, for the linear situation
with λ = 0, the BECs will oscillate between the two wells (see
the green thick solid line in Fig. 10). In MSR, this corresponds
to n coincident stars traveling from the north pole to the south
pole and then returning to the north pole, back and forth,
as shown on the first sphere in Fig. 10. When the nonlinear
strength is small (for example, nλ/R = 0.1), the BECs can
still be totally tunneled from one well to another well, and
get back (see the black dashed line in Fig. 10). Accordingly,
although the overlap of stars is broken by the nonlinearity,
there are still some stars that can arrive at the south pole
(see the second sphere in Fig. 10). Interestingly, when the
nonlinear strength exceeds the certain threshold value nλ/R =
2, the Josephson oscillation between the two wells will be
blocked (see the blue dash-dotted line in Fig. 10), and the
BECs will always be collected more into well a than into
well b, i.e., the expectation value of the boson number 〈na〉
in well a will always be larger than 〈nb〉 in well b. The self-
trapping phenomenon occurs. All of the stars cannot reach the
south pole (see the third sphere in Fig. 10). As the nonlinear
strength become large enough (for example, nλ/R = 10), the
oscillation of the relative number between the two wells tends
to be extremely small (see the red thin solid line in Fig. 10),
such as the BECs are trapped in well a from the beginning.
Corresponding to this interesting phenomenon, all the stars can
only travel on the northern hemisphere, as shown on the fourth
sphere in Fig. 10. Thus, the process of the BECs changing from
delocalization into self-trapping can be intuitively represented
by the range of the star motions on the Bloch sphere.

022123-11



H. D. LIU AND L. B. FU PHYSICAL REVIEW A 94, 022123 (2016)

VI. DISCUSSION

The recent research on the Majorana’s stellar representa-
tion has indicated that the distributions and motions of the
Majorana stars on the Bloch sphere have become a new tool to
study the symmetry-related questions in the high-dimensional
or many-body system. Our detailed study here shows that
the two important unique characteristics of a quantum state,
i.e., the Berry phase and quantum entanglement, can be
represented intuitively by the loops of stars and the distances
between them. The Berry phase not only consists of the solid
angles subtended by every Majorana star’s trajectories on
the Bloch sphere, but is also associated with the correlation
between the stars. These correlations between stars stems from
the nonorthogonality between the two level states of stars.
Moreover, the distances between stars are also proven to play
a key role in the entanglement for a symmetric multiqubit pure
state. The number of unequal stars and the normalized product

of the distance between stars perfectly match the classification
and measure of the entanglement for a two- and three-qubit
pure state, respectively, and thus can be taken as a tool of
multiqubit entanglement. These results are closely connected
to the symmetry of a quantum state. Therefore, the Majorana’s
stellar representation also has potential to be used to study
other intriguing quantum issues, such as quantum transition
and quantum tunneling.
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