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Berry curvature as a lower bound for multiparameter estimation
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Quantum Fisher information (QFI) is a key concept in quantum state estimation, and Berry curvature (BC) is
another basic concept to describe geometric properties of quantum states. In this paper, we consider pure states
undergoing unitary parametrization processes and show that the BC serves as a lower bound for the product
of QFIs corresponding to two different parameters through the Heisenberg uncertainty relation. This relation
between QFI and BC implies that the estimation precisions of two different parameters are mutually restrictive
due to finite BC, and the notion of QFI squeezing is introduced. A scenario of general su(2) parametrization is
considered in detail to verify the relation between the QFI and BC.
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I. INTRODUCTION

In information theory, estimation of parameters is a central
task, among which the limit of estimation precision is of great
interest [1–3]. In a classical scenario of estimation, given
the probability distribution and an unbiased estimator, Fisher
information sets an attainable lower bound for the variance
of the estimator due to the Cramér-Rao inequality [4,5]. In
a quantum estimation and detection scenario for a single
parameter θ , the extension of classical Fisher information is
not unique [6–11]. One prominent definition of the quantum
Fisher information (QFI), F (ρθ ) = tr(ρθL

2
θ ), is based on the

symmetric logarithmic derivative (SLD) operator Lθ [9,12],
which is Hermitian and determined by the equation ∂θρθ =
1
2 (Lθρθ + ρθLθ ). The Braunstein-Caves theorem [13] states
that QFI defined via SLD is maximal among all classical
Fisher informations which are induced by positive-valued-
operator measurement, indicating that F (ρθ ) utilizes the
information encoded in the state. The QFI is also closely
related to the fidelity susceptibility, which is a measure of the
distinguishability between the state ρ(θ ) and its neighboring
state ρ(θ + δθ ) [14–16].

For a multivariate parameter estimation, the counterpart
of F (ρθ ) is known as the QFI matrix F . The definition of
QFI matrix (QFIM) is also not unique [17] due to different
versions of logarithmic derivative operators, and one possible
choice is the SLD. Elements within the SLD-QFIM are
Fαβ = tr(ρ{Lα,Lβ}), where Lα(β) are SLD operators for
parameters α(β). The matrix’s diagonal terms represent the
QFIs for the corresponding single-parameter estimation. A
matrix inequality for multivariate parameter estimation reads
Cov(θ̂ ) � F−1, where on the left-hand side is the covariance
matrix induced by the locally unbiased measurement and on
the other side is the inverse of the SLD-QFIM [9,12]. However,
the lower bound given by the matrix inequality in general
cannot be achieved due to the noncommutativity ingrained
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in quantum mechanics [17]. Though the bound may not be
achieved, it has been pointed out that [13,17–19] the matrix
elements of F are identical to the Fubini-Study metric [20]
for a pure state, which is a gauge-invariant metric in projective
Hilbert space, PH = H/U (1), thus linking the problem of
parameter estimation with state distinguishability.

Recently, there has been a growing interest in the study of
quantum metrology for a general parameter estimation [21,22],
where parameters are embedded in the Hamiltonian rather
than as overall multiplicative factors [23–25]. Given a general
unitary parametrization process U (θ ), it has been shown that
such a process can be characterized by a Hermitian operator
Hθ ≡ i(∂θU

†)U [26,27], which can also be viewed as the
generator of parameter θ [28]. It is to be noted that when
θ does not depend on t , i.e., U = exp[−itH (θ )], the explicit
expression ofHθ is given in the form of a series expansion [22].

The Berry phase, originally discovered as a gauge-invariant
phase factor accompanying adiabatic changes [29], was later
realized to be a holonomy effect in Hilbert space [30–32]. The
loop integral expression of the Berry phase enables Berry to
rewrite the geometric phase as an integral of an antisymmetric
second-rank tensor field, i.e., the Berry curvature (BC) [33].
Defined on the parameter space (or projective Hilbert space),
the BC not only gives the Berry phase but also appears in
the equation of motion when the system’s evolution involves
slowly varying variables, e.g., anomalous velocity [34,35].
The Berry phase, along with the BC, not only helps to
explain the phenomena in solid-state physics [36] such as the
quantum Hall effect and the anomalous Hall effect [37,38],
but also becomes a candidate for fault-tolerant quantum
computation [39–41]. For quantum estimation theory, it was
noted that BC serves as an indicator of noncommutativity
in estimating different parameters, which means a large BC
indicates that it is hard to estimate two different parameters
simultaneously [42].

In this paper we consider the problem of a general
multivariate parameter estimation of θ inside the Hamiltonian,
and the process is as follows. First, we prepare a pure initial
state with no parameters to be estimated, then let the state
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undergo a unitary evolution which is determined by the
Hamiltonian H (θ). We prove that, after the unitary evolution,
the QFIM of θ and the BC on the parameter space of θ

are connected through the Heisenberg uncertainty relation.
To be explicit, there exists an inequality linking the BC to
the lower bound of the product of different parameters’ QFIs.
Furthermore, by applying the Robertson-Schrödinger relation,
a more stringent bound on the product of QFIs is derived
involving the off-diagonal terms of the QFIM. A scenario of
position and momentum measurement and a general su(2)
parametrization process are discussed to demonstrate the
bound, and we derive the Heisenberg uncertainty relations for
position and momentum operators and the angular momentum
operators from the perspective of parameter estimation.

The structure of this paper is as follows. In Sec. II, we
introduce the concepts of the QFI and QFIM together with the
BC, and the parameter generator H as well. In Sec. III, with
the application of the Heisenberg and Robertson-Schrödinger
uncertainty relations, two inequalities between the QFI and
BC are established along with the concept of QFI squeezing.
In Sec. IV, a scenario of general su(2) parametrization is
considered and discussed in detail to verify the inequality.
A brief discussion and summary are given in Sec. V.

II. QUANTUM FISHER INFORMATION AND BERRY
CURVATURE

In this section we briefly review the notion of the QFI,
QFIM, and BC. The most general case of estimation is to
consider a parametrized quantum state ρθ , whose spectrum
decomposition is

ρθ =
∑

i

pi(θ ) |ψi(θ )〉 〈ψi(θ )| , (1)

where θ is the parameter to be estimated. For any unbiased
estimator θ̂ , i.e., E(θ̂ ) = θ , its variance is bounded from below
by the inverse of the QFI [13]:

Var(θ̂) � F−1(θ ), (2)

and it is to be noted that the dimension of the QFI is the
negative square of the parameter to be estimated. The QFI in
Eq. (2) is defined as [8,9]

F (θ ) ≡ Tr(ρθL
2
θ ), (3)

where Lθ is the symmetric logarithmic derivative operator
given by

∂θρθ = 1
2 {ρθ ,Lθ } (4)

with {.,.} denoting anticommutator. The explicit expression of
the QFI is found to be [43]

F (θ ) =
∑

i

1

pi

(∂θpi)
2 +

∑
i

4pi 〈∂θψi |∂θψi〉

−
∑
i,j

8pipj

pi + pj

| 〈ψi |∂θψj 〉 |2. (5)

Now we assume that θ is brought in through a unitary
evolution U (θ ) whereas the initial state is

ρ0 =
∑

pi |ψi(0)〉 〈ψi(0)| , (6)

which contains no parameter to be estimated, and the state
becomes

ρθ = U †(θ )ρ0U (θ ) (7)

after the unitary evolution. Since pi is conserved under unitary
evolution, the QFI of ρθ now is

F (θ ) =
∑

i

4pi(〈∂θψi |∂θψi〉 − | 〈ψi |∂θψi〉 |2)

−
∑
i �=j

8pipj

pi + pj

| 〈ψi |∂θψj 〉 |2. (8)

The generator of parameter θ [21,22,28] is given by

H ≡ i(∂θU
†)U, (9)

which is Hermitian since U †U = I . By introducing H, Eq. (8)
can be rewritten as

F (θ ) =
∑

i

4pi 〈	H2〉i −
∑
i �=j

8pipj

pi + pj

| 〈ψi(0)|H|ψj (0)〉 |2

(10)
where 〈	H2〉i is the variance of H on the ith eigenstate of ρ0.

We further assume that the initial state is a pure state; then
its QFI after unitary evolution U (θ ) has a simple form as

F (θ ) = 4 〈	H2〉 . (11)

When the unitary parametrization contains more than one
parameter, θ = (. . . ,θi,θj , . . .), to be estimated, following a
similar procedure we can obtain a QFIM whose elements are

Fij = 4

(〈{
Hi ,Hj

}
2

−
〉
Hi 〈Hj 〉

)

= 4Cov(Hi ,Hj ), (12)

where Hi = i(∂iU
†)U is the generator of parameter θi , and

〈· · ·〉 denotes taking the average on the initial state. From
now on, we set Roman letters in subscript to represent the
corresponding parameter to be estimated, i.e., subscript i

represents θi .
On the other side, for a cyclic evolution of the pure state,

the geometric phase is defined as [29,31]

γg =
∮
C
i 〈ψ |dψ〉 , (13)

where the integrand is a 1-form Berry connection and C is
a closed loop in projective Hilbert space. After applying the
Stokes theorem to Eq. (13), the integral can be written as

γg =
∫∫

S

i 〈dψ | ∧ |dψ〉 , (14)

where the integrand is the phase 2-form with ∧ as the exterior
product, and S is a surface enclosed by C. The explicit
expression of the phase 2-form is

i

2
(〈∂iψ |∂jψ〉 − 〈∂jψ |∂iψ〉)dθi ∧ dθj . (15)

Here and hereafter we set ∂i ≡ ∂/∂θi and Einstein’s sum-
mation convention is assumed. The BC [33,36], which is
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an antisymmetric tensor in projective Hilbert space, can be
defined from Eq. (15) as

�ij = i(〈∂iψ |∂jψ〉 − 〈∂jψ |∂iψ〉). (16)

Since the integral of BC over θ and φ gives the dimensionless
geometric phase, the dimension of BC is the inverse of
the dimension of θ times the dimension of φ. Suppose
the parameters θ = (. . . ,θi,θj , . . .) are encoded in quantum
states through a unitary parametrization process U (θ); then
according to Eq. (9) the generators of θi and θj are

Hi = i(∂iU
†)U, (17a)

Hj = i(∂jU
†)U. (17b)

After substituting Eqs. (17a) and (17b) back into Eq. (16),
we have

�ij = i 〈[Hi ,Hj ]〉 . (18)

The BC has a clear geometric meaning due to the pres-
ence of the Berry phase, and likewise for QFIM, F can
be interpreted geometrically [6,13,17]. Since the accuracy
of estimation of parameters is equivalent to the ability of
distinguishing ρ(θ ) from its neighboring state ρ(θ + dθ ), F
can be identified as a quantum distinguishability metric [13].
For a pure state, F in Eq. (12) is identical, up to a constant, to
the Fubini-Study metric [17,20], which measures the distance
of the rays in PH . Furthermore, since the metric and curvature
are both defined in PH , for a pure state there exists a unifying
description of the QFIM and BC known as the quantum
geometric tensor (QGT) [33,44],

Qij = 〈∂iψ |(1 − |ψ〉 〈ψ |)|∂jψ〉 , (19)

with the following properties:

ReQij = Fij

4
, (20a)

ImQij = −�ij

2
. (20b)

Thus for a unitary parametrization process, the QFIM and
BC are connected through the QGT, and by using parameter
generators, the QGT can be expressed concisely as

Qij = 〈HiHj 〉 − 〈Hi〉 〈Hj 〉 . (21)

III. INEQUALITY BETWEEN QUANTUM FISHER
INFORMATION AND BERRY CURVATURE

In this section we consider a situation of a pure state
undergoing a unitary parametrization process; then we es-
tablish two inequalities between the QFI and BC, and the
inequality is verified under a simple parametrization scenario.

Derivation of the inequalities is based on two familiar uncer-
tainty relations in quantum mechanics: one is the Heisenberg
uncertainty relation [45]

〈(	Â)2〉 〈(	B̂)2〉 � 1
4 | 〈[Â,B̂]〉 |2, (22)

where Â and B̂ are Hermitian operators and 	Â = Â − 〈Â〉;
the other one is the Robertson-Schrödinger uncertainty relation

(R-S inequality) [46], which is the stronger version of Eq. (22),

〈(	Â)2〉 〈(	B̂)2〉 � 1
4 | 〈[Â,B̂]〉 |2 + 1

4 〈{	Â,	B̂}〉2

= 1
4 | 〈[Â,B̂]〉 |2 + Cov(Â,B̂)2, (23)

where in the second line the anticommutator is replaced with
covariance of operators, which is defined in Eq. (12).

A. Application of the Heisenberg uncertainty relation

First we consider the application of the Heisenberg uncer-
tainty relation. We substitute the parameter generators Hi and
Hj into Eq. (22); then we get

〈	H2
i 〉 〈	H2

j 〉 �
∣∣∣∣ 1

2i
〈[Hi ,Hj ]〉

∣∣∣∣
2

= 1

4
�2

ij , (24)

where the commutator is expressed as the BC due to Eq. (18).
According to Eq. (11), the variance of parameter generators
can be substituted with QFI, and Eq. (24) becomes

FiFj � 4�2
ij . (25)

Thus for a pure state under a unitary parametrization process,
its QFI and BC are connected. Now we consider a scenario
where the BC of parameters (θi,θj ) and QFI of one parameter
θi , Fi , are given; then Fj is bounded from below. Since Eq. (2)
states that it is the inverse of Fj that gives the lowest attainable
bound to any unbiased estimator θ̂j , unlike the Heisenberg
uncertainty relation that limits the precision of estimation from
below, the inequality of Eq. (25) indicates that there exists an
upper bound to the precision of estimation.

Analogous to bosonic squeezing [47] and inspired by
Eq. (25), we may introduce a similar concept called QFI
squeezing. The definition is as follows: if θj ’s QFI satisfies
that Fj < 2|�ij | then Fi is said to be squeezed (Fi > 2|�ij |),
and we can define a QFI squeezing parameter as

ξj = Fj

2|�ij | , (26)

and the dimension of the squeezing parameter is determined
by QFI and BC. As seen from Eq. (2), the larger the QFI is the
more accurate the estimation is. Thus for a pair of parameters
with QFI squeezing, one parameter’s estimation limit must be
more precise than the other one’s limit or vice versa, which
is consistent with bosonic squeezing. A detailed discussion of
QFI squeezing is presented in Sec. IV.

Now we apply the inequality in Eq. (25) to a simple
parametrization estimation scenario. Consider the case of a
simple two-parameter estimation case (with t = 1 and � = 1):

|ψ(x,p)〉 = ei(xp̂+px̂) |ψ(0)〉 , (27)

where (x,p) are parameters to be estimated and |ψ(0)〉 is an
arbitrary pure initial state. According to Eq. (9) and with the
help of Glauber’s formula, the parameter generators of (x,p)
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can be calculated as

Hx = i(∂xU
†)U = p̂ + 3p

2
, (28a)

Hp = i(∂pU †)U = x̂ − 3x

2
. (28b)

The BC on parameter space is

�xp = i 〈[Hx,Hp]〉 = 1, (29)

which is independent of initial state. The QFIs of (x,p) are

Fx = 4 〈	H2
x〉 = 4 〈	p̂2〉 , (30a)

Fp = 4 〈	H2
p〉 = 4 〈	x̂2〉 . (30b)

Substituting the QFI and BC into Eq. (25), we obtain

σx̂σp̂ � 1
2 , (31)

where σÂ denotes the standard deviation of an operator Â on
the initial state. Equation (31) recovers the famous Heisenberg
uncertainty relation for the position and momentum operators,
but viewed from the multiparameter estimation theory. The
calculation above also shows that the bound in Eq. (25) is
attainable with a coherent state.

B. Application of the Robertson-Schrödinger uncertainty
relation

Now we consider the more stringent Robertson-
Schrödinger inequality of Eq. (23). We denote (θi,θj ) as (θ,φ)
for the sake of simplicity. Following a similar procedure,
we have

FθFφ

16
�

∣∣∣∣ 1

2i
〈|[Hθ ,Hφ]|〉

∣∣∣∣
2

+ Cov2(Hθ ,Hφ)

= 1

4
�2

θφ + Cov2(Hθ ,Hφ)

= 1

4
�2

θφ + 1

16
F 2

θφ, (32)

where in the first line Eq. (11) is used and in the last line
Eq. (12) is used. Note that the off-diagonal element of QFIM,
Fθφ , now appears in the inequality.

To give a better understanding of Eq. (32), let us consider
the case of a two-parameter estimation of (θ,φ); then we have

FθFφ

16
− F 2

θφ

16
�

�2
θφ

4

⇒ detF � 4�2
θφ (33)

whereF is the QFIM of the two-parameter estimation process.
Equation (33) shows that the determinant of QFIM is bounded
from below by four times the square of BC in the parameter
space.

As mentioned in Sec. II, the QFI is identical to the
Fubini-Study metric up to a constant for a pure state; therefore,
Eqs. (25) and (32) can also be viewed as an inequality
connecting the Fubini-Study metric and the BC on the
parameter space of pure states, and such a connection may

imply a geometric explanation. It is worth mentioning that
in Ref. [48], following as the consequence of the Hermitian
Schwartz inequality in Hilbert space, Brody et al. proved a
similar inequality involving the Fubini-Study metric and BC
after mapping the whole quantum system to a real manifold.

IV. THE INEQUALITY IN A GENERAL su(2)
PARAMETRIZATION PROCESS

With the inequalities connecting the QFI and BC at hand,
now we consider a general su(2) parametrization process. We
assume that there are two parameters to be estimated, (θ,φ),
and the unitary evolution is

U = exp[−itH (θ,φ)] (34)

(with � = 1) whose Hamiltonian takes the form

H (θ,φ) = r · J. (35)

Inside Eq. (35), r is a unit vector with (θ,φ) as its spherical
coordinates:

r = (sin θ cos φ, sin θ sin φ, cos θ ), (36)

and J = (Jx,Jy,Jz) are the generators of su(2) algebra. Note
that r is a periodic function of θ or φ; thus the QFI corresponds
to θ or φ is also periodic.

For the specific unitary parametrization process in Eq. (34),
the parameter generator can be expressed in a form of series
expansion [22],

Hθ = i

∞∑
n=0

(it)n+1

(n + 1)!
(H×)n(∂θH ), (37)

where H× is a superoperator defined as H×(·) ≡ [H,·]. With
the help of Eq. (37), the explicit expression of generators of θ

is [49]

Hθ = − sin tvθ · J + (1 − cos t)(r × vθ ) · J, (38)

where vθ = ∂θr, and the expression for Hφ is similar with the
substitution of φ for θ . The explicit expressions of vθ and vφ

are

vθ = (cos θ cos φ, cos θ sin φ, − sin θ ), (39a)

vφ = (− sin θ sin φ, sin θ cos φ,0). (39b)

Note that vθ is unit vector while vφ is not (|vφ| = | sin θ |).
The calculations of QFI and BC are straightforward with

the explicit expression of parameter generators. For the
sake of convenience we rewrite the parameter generators by
introducing two new vectors,

Hθ = Aθ · J, (40a)

Hφ = Aφ · J, (40b)

where the explicit expressions of Aθ or Aθ are given
in Eq. (38). These two vectors can be decomposed into
the product of its norm and a unit vector, Aθ = |Aθ |aθ

and Aφ = |Aφ|aφ , where the norms are |Aθ | = 2| sin t
2 | and

|Aφ| = 2| sin θ sin t
2 |. It is easy to verify that aθ , aφ , and r are
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perpendicular to each other. The QFI can be expressed as

Fθ = 16 sin2 t

2
(	Jaθ

)2, (41a)

Fφ = 16 sin2 θ sin2 t

2
(	Jaφ

)2, (41b)

where

	Jaθ
=

√
〈(aθ · J)2〉 − 〈aθ · J〉2, (42a)

	Jaφ
=

√
〈(aφ · J)2〉 − 〈aφ · J〉2 (42b)

are the standard deviations of J on the initial state along the
direction of aθ or aφ , and the coefficients before the variance
	Jaθ

or 	Jaφ
are proportional to the maximal QFI of θ or

φ [49].
The explicit expression of the BC is

�θφ = i 〈[Hθ ,Hφ]〉
= −4 sin θ sin2 t

2
〈r · J〉 , (43)

where the commutation relation for su(2) algebra
[a · J,b · J] = i(a × b) · J is utilized, and we set

〈J〉 = (〈Jx〉 , 〈Jy〉 , 〈Jz〉). (44)

Now we select a unique initial state to test the effectiveness
of the inequality and the coherent spin state (CSS) serves as a
benchmark in the field of quantum measurement [50]. Without
loss of generality, we assume a specific form of CSS as the
initial state:

|η〉 = ei π
2 Jy |j,j〉 , (45)

where |j,j 〉 is the eigenstate of Jz with eigenvalue j . The QFIs
of θ and φ with respect to |η〉 are

Fθ = 8j sin2 t

2
(1 − a2

θx)

= 2j sin2 t

2

[
3 + cos2 φ

(
1 − 4 cos2 θ cos2 t

2

)

−2 cos θ sin t sin 2φ + (2 cos t − 1) sin2 φ

]
(46a)

Fφ = 8j sin2 θ sin2 t

2
(1 − a2

φx)

= 8j sin2 θ sin2 t

2

[
1 − cos2 θ sin2 t

2
cos2 φ

+1

2
cos θ sin t sin 2φ − cos2 t

2
sin2 φ

]
, (46b)

where the subscript x denotes a vector’s component along
the x axis. As for the BC, its explicit expression is

�θφ = 4j sin θ sin2 t

2
rx

= 4j sin2 θ sin2 t

2
cos φ. (47)

FIG. 1. Plot of four times the square of BC (dashed red line)
together with the product of QFIs (solid blue line) of θ and φ, with
j = 1. It is to be noted that both QFI and BC are dimensionless due
to the dimensionless θ and φ. The parameters are (a) θ = φ = π/4
and the square of curvature oscillates along with the product of the
QFIs; (b) θ = π/2 and φ = π/4 and two lines almost coincide while
actually there exists a tiny difference between them; (c) for t = 3 and
φ = π/4 the lower bound becomes tight near the point θ = π/2; and
(d) for t = 3 and θ = π/3 the lower bound becomes tight around the
point φ = π/2.

The product of Fθ and Fφ in Eqs. (46a) and (46b) together
with 4�2

θφ in Eq. (47) as a function of θ , φ, and t are shown
in Fig. 1 (with j = 1). In Figs. 1(a) and 1(b), θ and φ are
fixed with t as a free parameter. The product of QFIs shows
an oscillating behavior and so does 4�2

θφ ; especially for the
parameters set in Fig. 1(b) the bound is almost tight regardless
of t yet a detailed investigation shows that the difference
between FθFφ and 4�2

θφ does exist. In Figs. 1(c) and 1(d),
t is fixed and 4�2

θφ follows the rise and fall of the product of
QFI; in addition, the bound becomes tight for certain parameter
setting, e.g., the point near θ = π/2 in Fig. 1(c). All plots show
that the inequality works satisfactorily with the CSS.

Actually, there exists a deeper explanation for the perfor-
mance of the inequality in the case of su(2) parametrization,
which is regardless of the specific form of initial state. We
substitute the expression of QFI in Eqs. (41a) and (41b)
and that of BC in Eq. (43) into the inequality in Eq. (25);
we then have

(	Jaθ
)2(	Jaφ

)2 � 1
4 〈r · J〉2 , (48)

which depends not on time t but only on (r,aθ ,aφ) and the
initial state. Equation (48) shows that the product of the vari-
ances along aθ and aφ are bounded from below by the expected
value of angular momentum along the direction of r. Since
(r,aθ ,aφ) forms an orthonormal coordinate system, Eq. (48) is
equivalent to the uncertainty relation for angular momentum
operators with reference to a Cartesian coordinate system,

(	Jα)2(	Jβ)2 � 1
4 | 〈Jγ 〉 |2, (49)

where [Jα,Jβ] = iεαβγ Jγ . Once again the Heisenberg
uncertainty relation is recovered, and this is the origin that
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FIG. 2. Plot of the QFI squeezing parameters, ξθ (brown line)
and ξφ (dashed green line), during the time evolution with parameter
setting θ = π/2 and φ = π/4 (with j = 1); the squeezing parameters
are dimensionless since QFI and BC are dimensionless. As shown in
Eq. (26) that a less-than-one squeezing parameter guarantees its dual
squeezing parameter to be larger than one, it is clear to see that when
one squeezing parameter is below 1 (a relative smaller QFI) another
squeezing parameter rises above 1 (a relative larger QFI), but not
vice versa.

guarantees the effectiveness of the inequality in the case of
su(2) parametrization.

The definition of QFI squeezing, defined in Eq. (26), has
also been tested with the CSS given in Eq. (45) and the result
is plotted in Fig. 2 under a parameter setting of θ = π/2, φ =

π/4. When one QFI squeezing parameter, say ξθ , falls below 1,
another squeezing parameter ξφ must be greater than 1. Note
that ξθ and ξφ are proportional to the QFI of θ and φ; thus
the behavior of squeezing parameters ξθ and ξφ shows that
the QFIs for different parameters show mutually restrictive
behavior in multiparameter estimations.

V. CONCLUSIONS

In summary, we investigated the relation between the QFI
and BC for pure states under a unitary parametrization process.
We find that for the multiparameter estimation process, the
QFI and BC in parameter space can be described uniformly
by exploiting the generators. Furthermore, we deduced two
inequalities relating the QFI and BC through the Heisenberg
uncertainty relation and the Robertson-Schrödinger uncer-
tainty relation, and the notion of QFI squeezing was proposed.
Two parametrization scenarios including the general su(2)
parametrization were discussed to test the inequality and the
squeezing parameter. Our results show that estimations of
the precision of two parameters are mutually restrictive and
controlled by the BC.
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