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High-fidelity composite adiabatic passage in nonlinear two-level systems
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We investigate the composite adiabatic passage (CAP) reported by B. T. Torosov et al. [Phys. Rev. Lett.
106, 233001 (2011)] in a nonlinear two-level system in which the level energies depend on the occupation of
the levels, representing a mean-field type of interaction between the particles. A high-fidelity, fast, and robust
quantum manipulation is achieved in the system. We consider the effect of interparticle interaction and find
that it tends to increase the number of the pulse sequences. The CAP technique can suppress the nonadiabatic
oscillations below the quantum-information benchmark 10−4, as long as there exist sufficiently long composite
sequences. We analyze the robustness against the variations in the field parameters. The difference between the
nonlinear and linear systems on the CAP technique is also discussed.
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I. INTRODUCTION

Manipulating the state of a quantum system by external
fields is crucial in atomic and molecular physics for ap-
plications such as metrology, interferometry, nuclear mag-
netic resonance, quantum-information processing, or driving
of chemical reactions [1–4]. The practical implementation
of quantum-information processing, however, requires time-
dependent schemes featuring three important issues: The
driving quantum state to a target state should be achieved
(i) with a high fidelity, typically with an admissible error
lower than 10−4, (ii) in the shortest possible time in order
to prominently minimize decoherence effects, and (iii) in a
robust way with respect to the imperfect knowledge of the
system or to variations in experimental parameters [5–7].

Adiabatic passage (AP) techniques are a popular tool for
quantum state manipulation. Various AP techniques have
been proposed and demonstrated, including rapid adiabatic
passage, Stark-chirped rapid adiabatic passage, piecewise
adiabatic passage, stimulated Raman adiabatic passage, and
their variations [8]. The techniques are robust, but in nearly
all of them transition probability is incomplete. Another basic
approach to robust coherent control of quantum systems is the
technique of composite pulses, which is widely used in nuclear
magnetic resonance [9] and, more recently, in quantum optics
and quantum-information processing [10,11]. This technique
replaces the single pulse used traditionally for driving a
two-state transition by a sequence of pulses with appropriately
chosen phases, which are used as a control tool for shaping
the excitation profile in a desired manner, e.g., to make it
more robust to variations in the experimental parameters of
intensity and frequency. The imperfections may be caused by
an imprecise pulse area, an undesirable frequency offset, or an
unwanted frequency chirp [12].
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To combine the advantages of adiabatic passage and com-
posite pulse techniques, and to achieve robust and high-fidelity
quantum state control, some optimal control approaches
have been proposed [13–16]. Among them, the composite
adiabatic passage (CAP) technique is a powerful and flexible
control tool [16], which can deliver extremely high fidelity
of population transfer, far beyond the fault-tolerant quantum
computing benchmark. Recently, the CAP technique has been
widely studied [17] and demonstrated experimentally in a
rare-earth ion-doped solid [18]. The experimental explanation
and associated theoretical discussion are limited to a linear
two-level system, in which the interaction between particles
is ignored. In recent years, however, an increasing interest has
been devoted to studying the nonlinear quantum system with
interparticle interaction. The interaction between the particles
can significantly influence the quantum transition dynam-
ics [19,20]. Moreover, a single-pulse duration is very long
(i.e., at infinitely slow sweep speeds) to satisfy the adiabaticity
criteria. However, a CAP sequence contains N pulses. Hence,
for CAP the total pulse duration is N times the single-pulse
duration. Under adiabatic conditions, the total pulse duration
will be infinite, which is impractical (and indeed, unphysical).

In this paper, we study the CAP and achieve high-fidelity,
fast, and robust quantum state manipulation in a nonlinear
two-level system in which the level energies depend on the oc-
cupation of the levels, representing a mean field of interaction
between the particles. The influence of interparticle interaction
on CAP is investigated. We show that the interaction tends to
increase the numbers of pulse sequences, i.e., the high-fidelity
transition probability can still be achieved in nonlinear systems
as long as there exist sufficiently long composite sequences.
Different from the linear quantum system, no matter how many
pulse sequences, the total pulse duration is fixed for nonlinear
quantum systems.

II. MODEL

The nonlinear two-state system we consider is de-
scribed by the following dimensionless Schrödinger
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equation [21]:

i
∂

∂t
a(t) = H(t)a(t), (1)

with the Hamiltonian given by

H(t) = v(t)

2
σ̂x +

[
γ (t)

2
+ c

2
(|a2|2 − |a1|2)

]
σ̂z, (2)

where a(t) = [a1(t),a2(t)]T is the probability amplitudes of
the two states, σ̂x and σ̂z are Pauli matrices, and γ (t) and
v(t) are the energy bias and coupling strength between two
states, respectively. c is the nonlinear parameter describing the
interparticle interaction. The total probability |a1|2 + |a2|2 is
conserved and set to be 1. The model not only has aroused
great interest in theory but also has important applications
in physics, for example, for describing a spin tunneling of
nanomagnets [22], a BEC in a double-well potential or in an
optical lattice [23], coupled waveguide arrays [24], etc.

In the linear model (c = 0), the CAP method has been
proposed [16] in which the propagator of a two-state system
can be parametrized by the Cayley-Klein parameters, and the
single pulse driving the quantum transition is replaced by a
sequence of pulses with appropriately chosen phases. The
technique allows one to suppress the nonadiabatic oscillations
in the transition probability and to reduce the error below
the 10−4 quantum computation benchmark, even with simple
three- and five-pulse composite sequences. Besides, the com-
posite phases do not depend on the specific pulse shape and
chirp as long as the latter satisfies the symmetry property.

The success of the CAP in linear systems has demonstrated
its great ability to realize quantum manipulation [17,18].
Keeping this in mind, for system (1) with Hamiltonian (2), we
employ a sequence of N (N = 2n + 1, n is an integer) pulses,
each with a phase φk(k = 1,2, · · · N ), to achieve high-fidelity
quantum transition. The phase φk is imposed upon the driving
field Rabi frequency (coupling strength), v(t) → v(t)eiφk . For
simplicity and as the very first try toward a CAP protocol for
nonlinear system, the composite control phase in the linear
systems [16] is used here. Assuming the coupling strength
v(t) is an even function of time and the detuning γ (t) is odd,
the composite phase is

φk =
(

N + 1 − 2

⌊
k + 1

2

⌋)⌊
k

2

⌋
π

N
, (3)

where the symbol �x� denotes the floor function. The phase
sequence is symmetric, i.e., φk = φN+1−k , and φ1 = φN = 0.

III. NONLINEAR EFFECT

Our goal is to investigate the CAP with nonlinear interpar-
ticle interaction and to consider how the nonlinear interaction
would affect the CAP technique. With the emergence of
nonlinearity, the transition dynamics dramatically changes. In
this case, the Schrödinger equation (1) is no longer analytically
solvable. We therefore exploit a 4th–5th-order Runge-Kutta
algorithm to trace the quantum evolution numerically and
calculate the transition probability of system.

As an example, we consider the Allen-Eberly (AE) model
assuming a sech couple strength (pulse) and a tanh frequency

FIG. 1. Contour plots of transition probability as the function of
composite sequence pulses N and interaction c for the AE pulse with
α = 1 and v0 = 1.2.

energy bias (chirp) [16],

v(t) = v0sech(t/T ), γ (t) = α tanh(t/T ), (4)

where v0 and α are constant parameters with the dimension of
frequency, and T is the pulse width.

For linear case, the transition probability p = |a2|2 is
[16]

p =
cosh (παT ) − cos

(
πT

√
v2

0 − α2
)

1 + cosh (πv0T )

= 1 −
cos2

(
1
2πT

√
v2

0 − α2
)

cosh2
(

παT
2

) . (5)

For v0 < α, the cosine in Eq. (5) has to be replaced by a
hyperbolic cosine. A transition probability p = 1 (complete
population inversion) is obtained for

√
v2

0 − α2T = 2n + 1,
with n = 0,1,2, . . . (integer). In the adiabatic limit (v0 > α �
2/T ), the transition probability also tends to unity. If α is not
large enough, nonadiabatic oscillations versus v0 appear and
the probability is reduced. These oscillations can be suppressed
to any order by the CAP technique, even with simple three- and
five-pulse composite sequences. Note also that all the variables
here should be understood as scaled dimensionless variables.
Throughout, we use T to scale. Then, T = 1, v0,α, and c are
in units of 1/T , respectively.

Figure 1 shows the final transition probability as a function
of both the number N of composite sequence pulses and
particle interaction c for the AE model with α = 1 and v0 =
1.2. The blue zones correspond to low transition probability
whereas red areas indicate high transition probability. We
see that the transition dynamics is strongly dependent on the
nonlinear interaction. For very weak interaction, a high transi-
tion probability can be achieved, even with simple three- and
five-pulse composite sequences. As the nonlinear interaction
grows, nonadiabatic oscillations are significantly strengthened
and the probability is reduced dramatically. This means that
high transition probability will no longer be achieved with a
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FIG. 2. Transition probability as the function of peak Rabi
frequency v0 for different interactions c = 0.2 (top) and c = 2.0
(bottom) and composite sequence pulses N . Frames (b) and (d)
show the infidelities of the respective (a) and (c) profiles. The green
dash-dotted cure is for five-pulse sequences N = 5 with c = 0.0. The
value of parameter α = 1.

small number of composite sequences. However, interestingly,
these oscillations can be suppressed by the CAP technique
with sufficiently long composite sequences, i.e., as long as
there exist sufficiently long composite sequences, the CAP
technique can still be applied to a nonlinear two-level system.
It is noted that for linear systems the total pulse duration of the
CAP is N times the single-pulse duration. However, the total
pulse duration is fixed in our nonlinear system. In all numerical
simulations, the numerical time was performed from times
−100 to 100.

We calculate the transition probability as the function
of peak Rabi frequency v0 for different interactions and
composite sequence pulses N . The results are shown in
Fig. 2. Figures 2(a) and 2(b) show that a 1299-pulse CAP
with interaction c = 0.2 suffices to suppress the nonadiabatic
oscillations below the quantum-information benchmark 10−4.
Figures 2(c) and 2(d) depict the transition probability vs peak
Rabi frequency v0 for the interaction c = 2.0. For comparison
with Ref. [16], we also plot transition probability as the
function of peak Rabi frequency v0 for a five-pulse sequences
N = 5 with c = 0.0 (green dash-dotted cure). We see that,
for a linear system, even a sequence of five pulses is enough
to achieve extremely high fidelity with an error below 10−4.
However, for a nonlinear system, the 10−4 error benchmark
can still be reached, albeit with longer sequences.

To test the robustness against the variations in the field
parameters, we vary both α and v0 around their optimal values
and calculate the fidelity. The results are summarized in Fig. 3,
which shows clearly that the CAP is extremely robust with
respect to an increase in α and v0. Furthermore, the high-
fidelity region with an error below 10−4 of CAP is hugely
expanded compared to a single pulse. Different from the linear
quantum system, in a nonlinear quantum system, to achieve
ultrahigh fidelity, a large number of composite pulses is need

FIG. 3. Contour plots of transition probability as the function of
peak Rabi frequency v0 and chirp rate α at different interactions
c = 0.2 (top) and c = 2.0 (bottom) with composite sequence pulses
(a) N = 1, (b) N = 1399, (c) N = 1, and (d) N = 4799.

in CAP, and the number of pulses gradually increases as the
nonlinear interaction grows.

To further explore the above peculiar phenomena, we
introduce the relative phase θ = θ2 − θ1 and the transition
probability p = |a2|2 as two canonical conjugate variables
with a1 = √

1 − p exp (iθ1) and a2 = √
p exp (iθ2), then we

can obtain an effective classical Hamiltonian and satisfy
the canonical equations, i.e., dp/dt = −∂H/∂θ , dθ/dt =
∂H/∂p,

H (t) = γ

2
(1 − 2p) − c

4
(1 − 2p)2

+ v
√

p(1 − p) cos (θ + φk). (6)

The classical Hamiltonian can describe completely the dy-
namic properties of system (1) [19]. In Fig. 4, we show
the transition probability and relative phase evolution for
the AE model during CAP with and without the control
phase under different interactions and pulse sequences. In
Figs. 4(a)–4(c), we plot the trajectories in phase space, the
transition probability, and the relative phase evolution for
the different parameters. The black triangle and the star
represent the initial state and the final state, respectively.
We see that the control phases play an important role in
the CAP technique, which can significantly influence the
quantum transition dynamics. It allows one to suppress the
nonadiabatic oscillations in the transition probability and to
ensure an ultrahigh fidelity in the CAP process. In the linear
case, the CAP works for a small number of pulses and each
constituent pulse produces a large population change but
not complete inversion; the destructive interference of the
deviations drives the system to complete inversion in the end.
Whereas in the nonlinear quantum system, the CAP requires a
large number of pulses, each of which produces a small change
in population. However, the universal composite phases are
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FIG. 4. (a) Trajectories in phase space. (b) Transition probability
as function of time (inset: control phase as the function of time).
(c) Relative phase as function of time. (d) 1299-pulse sequences as
function of time.

derived from the condition to cancel the deviations from unit
transfer efficiency due to nonadiabatic effects by enforcing
destructive interference of these deviations. By directly solving
the Schrödinger equation (1) using the same approach, we can
reproduce the above results. In contrast to the CAP technique
of Ref. [16], no matter the number of pulse sequences, the total
pulse duration is fixed. Thus, the profiles of pulse and chirp are
different for different pulse sequences. For example, for the
1299-pulse system, the AE model becomes the Landau-Zener
model of finite duration [Fig. 4(d)], which generates the
oscillations of the transition probability without the control
phase.

IV. CONCLUSIONS

In conclusion, we have investigated the high-fidelity CAP
technique in a nonlinear two-level system and explored the

influence of interparticle interaction on high-fidelity CAP.
Similar to linear cases, the CAP protocol can achieve high-
fidelity population complete inversion in a nonlinear quantum
system. We have found that interparticle interaction tends
to increase the number of pulse sequences. However, the
CAP technique can still suppress the nonadiabatic oscillations
below the quantum-information benchmark 10−4 as long as
there exist sufficiently long composite sequences. Different
from the linear quantum system, the total pulse duration
is fixed for the nonlinear quantum system. These features
make the CAP technique a potentially important tool in
applications requiring ultrahigh fidelity and superfast control,
such as quantum-information processing and quantum optics.
The high-fidelity quantum control in a nonlinear two-level
system can be realized experimentally using a Bose-Einstein
condensate (BEC) between Bloch bands in an accelerated
optical lattice, where high enough densities of the atoms and
Feshbach resonance can be achieved so that the nonlinear
effect discussed above should be readily detectable [25]. The
nonlinear Landau-Zener tunneling between two energy bands
of a BEC in a periodic potential has been observed [26,27],
and ultrashort laser pulse sequences have been used in
quantum control [28], indicating that the high-fidelity CAP
protocol in a nonlinear two-level system can be realized
experimentally. We also should point out that the present
control phase may not be the optimal one. However, the choice
is a simple and convenient one for achieving high-fidelity
quantum manipulation of nonlinear two-level systems. It
remains a challenging and open problem on how to obtain the
optimal control phase by the propagator method of nonlinear
systems.
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