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Degree of entanglement for two qubits
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In this paper, we present a measure to quantify the degree of entanglement for two qubits in a pure state.
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[. INTRODUCTION are many such decompositions, the weights of the two super-
posed states are remarkably unique. The square of the weight
Quantum entanglement is the most surprising nonclassicaif the maximally entangled state vectoe., Pg=p?) is then
property of composite quantum systeifrdd. As it is well ~ defined as the degree of entanglement for two qubits, such a
known, a qubit(or a spin¢1/2) particle is described by the measure is consistent with three measures of entanglement
2% 2 density matrixp(n)=(1+c-n)/2, |n|<1, wherelis  Previously set forth: maximal violation of Bell's inequality
the unit matrix,(;:((fl,a'z,(fg) the Pauli matrices vector, [11], concurrencég],_and twofpartlcle visibility{ 12].
andn the Bloch vector|n|=1 corresponds to a pure state, The purpose of this paper is 10 propose an approach to the

otherwise a mixed state. Whereas, an entangled pairs of m}&roblem of defining the degree of entanglement for two qu-

qubits is completely described by the following4 density bits in a pure state. In Sec. Il, a new measure is formulated to
matrix: quantify the degree of entanglement. Some examples are

given in Sec. Ill. Conclusion and discussion are made in the
1 3 last section.
- - A B
PAB=Z 121+ o” uel+ 1®0'B-V-i-'21 Bijoi ® 0o
b= Il. FORMALISM

1)
_ ) ) _ Theorem If pag IS a pure state, then its degree of en-
from which one could obtain two reduced density matrices tanglementP is equal to

pa=trg(pag) =3 (1+ - u), Pe=(—detr) Y4 3)
pe=trapas) =3(1+0°-v), (2} where the matrixx is
for the two qubitsA andB, whereu andv are Bloch vectors 1 v, v, vs
for particlesA and B, respectively;3;; are some real num-
bers. ~ | U1 Bu B2 Bz 4
It has been shown that entangled pairs are a more power- a= Uy Bo1 B PBas|’ )

ful resource than separable, i.e., disentangled, pairs in a num-
ber of applications, such as quantum cryptogra#jydense
coding [3], teleportation[4] and investigations of quantum , o
channels[5], communication protocols, and computation 00 pag iS a pure state implies thai_/sz:PAB’ from
[6,7]. The superior potentiality of entangled states has raisefnich one obtains the following constraints among v,
a natural question: “How much are two particles en-andBi (i,j=1,2,3):

tangled?,” since pairs with a high degree of entanglement

Uz Ba1 Bz Bz

should be a better resource than less entangled ones. Many Ui=Biv1t Biovot Bigvs, )
measures of entanglement proposed in the past have relied
on either the Schmidt decompositif8] or decomposition in v;=B1ijUst Byt Biuz, (6)

a magic basig9]. In an interesting paper, Abouradey al.
devised a new measure of entanglement for pure bipartite
states of two qubits, based on a decomposition of the state > B5=3—|ul*~|v|%, (7)
vector as a superposition of a maximally entangled state vec- b
tor and an orthogonal factorizable of0]. Although there

Bij=uw;—(—1)"IMyj, (€S
*Email address: jinglingchen@eyou.com whereM;; is the algebraic complement of the matrix element
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Bi1
Ba1
Ba1

B2
B2z
Bz

B3
B3
B33

B= (9)

Equations(5) and (6) can be recast agv=u, BTu=v,
whereT represents transpose ane (uy,U,,uz)". An inter-
esting result, i.e.|u|=|v|, will be obtained immediately
from Egs.(5) and(6) for the pure statg,g [13]. From Eq.
(8) we have

Bir+ Blot Bis= BiaUsv1 + Braligv o+ Bialivs
(=D ByMp+(—1)1*2

X B1oM 1ot (= 1)1 381 M 5] (10)

Due to deﬁzﬁllMll_Blelz—FBl?:Ml?: and Eq(S), one
obtains

Birt Bi+ Bly— ui=—detB. (1D
Similarly

B31+ B3+ Bas— uj=—deiB,

iyt Byt Bs— uz=—deiB. (12)

After combining Egs.(7), (11), and (12), and taking|u|
=|v| into account, one easily obtainsdet3=1—|u|? [13].
Consequently, we have

(—deta)=[ (—deB) (1 |u[») 1= VI-[u]?. (13)

One can know from Ref10] that Pe=2« k5, wherex;
andk, are the two coefficients in the Schmidt decomposition
| W)= k| X1,Y1) + K2|X2,Y2), pas=|V XV, where
{|X1),]%2)} and{|y1),|y2)} are orthogonal bases for the Hil-
bert spaces of particle& and B, respectively. It is easy to
prove that k;=+/(1+]u|)/2, k,=+/(1—|u|)/2, which are

square roots of the two eigenvalues of the reduced majrix

or pg. Therefore, we hav®g=(—deta)¥. This ends the
proof.

Ill. EXAMPLES

Example 1 For the state¥)=(|00)+|01)+|11))//3,
one obtains the density matrix

1
PAB:|\I’><\I,|: 3

B O Rk R
B O R,
o o o o
P O Rk

with the Bloch vectorsu=(2/3,0,1/3f, v=(2/3,0—1/3)",
and the alpha matrix
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32 0 -1

. 1]2 2 0 -2

““3lo00 -2 o 19
12 0 1

One can hav& = 2/3, which is consistent with the result in
Ref.[10].

Example 2 For the statdW)=[|00)+2(|01)+|11))]/3,
the density matrix is

1
PAB:|‘I’><‘I'|: 9

N O N B
A O DN
o O O o
A O DN

with u=(8/9,0,1/9Y, v=(4/9,0—7/9)", and the alpha ma-

trix
9 4 0 -7
1|8 4 0 -8 .
““9lo0 0o -4 o0 (15
14 0 1

Hence the degree of entanglemen®is=4/9.
Example 3 For the maximally entangled statgl)
=(]00)+|11))/\/2, one obtains the density matrix

1
PAB:|‘I’><\I’|: 2

h O O K
o o o o
o o o o
P O O Kk

with the Bloch vectorsi=v=(0,0,0)", and the alpha matrix

10 0 0

. lo1 0 o

““lo o -1 of .
00 0 1

ThusPg=1 reaches the highest value.
Example 4 For the disentangled pure stapag=3(1

+ 0 u)® 3(1+¢®-v), where|u|=|v|=1, we have the al-
pha matrix as

1
Uy

(] %) U3

Uvg Ugvp Ugug

a

(17)

Uz Upvg Uplp Uplg

Uz Ugvp Uglp Uglg

Obviously Pe=0 indicates thap g is disentangled.
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IV. CONCLUSION AND DISCUSSION 9X 9 matrix a, it is easy to show thaPg= (—detn) V=1,

In conclusion, we have presented a measure to quantifwhich indicates that the staf@) in Eq. (19) is just a maxi-
the degree of entanglement for two qubits in a pure state. Wanally entangled state.
would like to make some discussion in the following. (i) After making the parametrizatic1m=f1tanh¢u, where
(i) The similar idea developed in this paper could be 9€N{=y/|u|, the density matrix of a qubip(u)=(1+c-u)/2
eralized to quantify the degree of entanglement for two di-5n pe connected to the Lorentz boost mattixu)

Nits (i.e., N-state quantum systemid,=2 andN=3 corre-
spond to a qubit and a quitrit, respectivel§4,15 in a pure

state. For instance, the density matrix for two entangled

qutrits could be written as

1 ) .. 3
pas=g| 191+ V3NA u® 1+ \/§1®)\B-v+§

: (18)

8
xijzl BN @]

where\; (i=1,2,...,8) are theight Hermitian generators
of SU(3) (namely, the usual Gell-mann matrigegor the
state of two entangled qutrits

|¥)=3(|00)+[12)+22)), (19
its corresponding density matrix 5]
1 33 A s
pae=g| 1015 2 BAfer}], (20
9 252, 7l j

with the nonzero coefficient8,= B3z= Bas= Bss= Bsg=1,
B2o=Bss= B77=—1. The elements;;, 1, u andv form a

=exp(p,o - U/2)=1coshf,/2)+ o Usinh(p,/2) as[16]

L(u)

p(u)= 2 coshay’ (21)

du= /2.
Obviously,p(u) andL(u) are in one-to-one correspondence.
For the former, the physical meaning of the veatois the
Bloch vector in quantum mechanics, while for the latter it is
the relativistic velocity. Due to the rapidity, i.e., the hyper-
bolic angle, special relativity can be formulated in terms of
hyperbolic geometry. As a result, some physical quantities
have been found to have geometric significance, such as the
Thomas rotation angle corresponds to the defect of a hyper-
bolic triangle[17,18. After viewing the Bloch vectou as an
analogous relativistic velocity, the Bures fideli&(p4,p5)

=(trv \/Epz \/E)2 was found to have a geometric interpre-

tation in the framework of hyperbolic geomet§6]. Simi-

larly, with the aid of the parametrizatiam=utanhg,, it is

not difficult to find that the entanglement degrd®:
=\1—[u[?=1/coshe, for two qubits in a pure state is the
reciprocal of the Lorentz factdd 8] in the hyperbolic geom-
etry. The extension of our approach to the mixed states of
two entangled qubits will be discussed elsewhere.
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