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Degree of entanglement for two qubits
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In this paper, we present a measure to quantify the degree of entanglement for two qubits in a pure state.
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I. INTRODUCTION

Quantum entanglement is the most surprising nonclass
property of composite quantum systems@1#. As it is well
known, a qubit~or a spin-~1/2! particle! is described by the
232 density matrixr(n)5(11sW •n)/2, unu<1, where1 is
the unit matrix,sW 5(s1 ,s2 ,s3) the Pauli matrices vector
and n the Bloch vector.unu51 corresponds to a pure stat
otherwise a mixed state. Whereas, an entangled pairs of
qubits is completely described by the following 434 density
matrix:

rAB5
1

4 S 1^ 11sW A
•u^ 111^ sW B

•v1 (
i , j 51

3

b i j s i
A

^ s j
BD

~1!

from which one could obtain two reduced density matrice

rA5trB~rAB!5 1
2 ~11sW A

•u!,

rB5trA~rAB!5 1
2 ~11sW B

•v!, ~2!

for the two qubitsA andB, whereu andv are Bloch vectors
for particlesA and B, respectively;b i j are some real num
bers.

It has been shown that entangled pairs are a more po
ful resource than separable, i.e., disentangled, pairs in a n
ber of applications, such as quantum cryptography@2#, dense
coding @3#, teleportation@4# and investigations of quantum
channels @5#, communication protocols, and computatio
@6,7#. The superior potentiality of entangled states has rai
a natural question: ‘‘How much are two particles e
tangled?,’’ since pairs with a high degree of entanglem
should be a better resource than less entangled ones. M
measures of entanglement proposed in the past have r
on either the Schmidt decomposition@8# or decomposition in
a magic basis@9#. In an interesting paper, Abouraddyet al.
devised a new measure of entanglement for pure bipa
states of two qubits, based on a decomposition of the s
vector as a superposition of a maximally entangled state
tor and an orthogonal factorizable one@10#. Although there
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are many such decompositions, the weights of the two su
posed states are remarkably unique. The square of the we
of the maximally entangled state vector~i.e., PE5p2) is then
defined as the degree of entanglement for two qubits, su
measure is consistent with three measures of entanglem
previously set forth: maximal violation of Bell’s inequalit
@11#, concurrence@9#, and two-particle visibility@12#.

The purpose of this paper is to propose an approach to
problem of defining the degree of entanglement for two q
bits in a pure state. In Sec. II, a new measure is formulate
quantify the degree of entanglement. Some examples
given in Sec. III. Conclusion and discussion are made in
last section.

II. FORMALISM

Theorem. If rAB is a pure state, then its degree of e
tanglementPE is equal to

PE5~2detâ !1/4, ~3!

where the matrixâ is

â5S 1 v1 v2 v3

u1 b11 b12 b13

u2 b21 b22 b23

u3 b31 b32 b33

D . ~4!

Proof. rAB is a pure state implies thatrAB
2 5rAB , from

which one obtains the following constraints amongui , v i
andb i j ( i , j 51,2,3):

ui5b i1v11b i2v21b i3v3 , ~5!

v i5b1iu11b2iu21b3iu3 , ~6!

(
i , j

b i j
2 532uuu22uvu2, ~7!

b i j 5uiv j2~21! i 1 jM i j , ~8!

whereMi j is the algebraic complement of the matrix eleme
b i j for the following b̂ matrix:
©2002 The American Physical Society03-1
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b̂5S b11 b12 b13

b21 b22 b23

b31 b32 b33

D . ~9!

Equations~5! and ~6! can be recast asb̂v5u, b̂Tu5v,
whereT represents transpose andu5(u1 ,u2 ,u3)T. An inter-
esting result, i.e.,uuu5uvu, will be obtained immediately
from Eqs.~5! and ~6! for the pure staterAB @13#. From Eq.
~8! we have

b11
2 1b12

2 1b13
2 5b11u1v11b12u1v21b13u1v3

2@~21!111b11M111~21!112

3b12M121~21!113b13M13#. ~10!

Due to detb̂5b11M112b12M121b13M13 and Eq.~5!, one
obtains

b11
2 1b12

2 1b13
2 2u1

252detb̂. ~11!

Similarly

b21
2 1b22

2 1b23
2 2u2

252detb̂,

b31
2 1b32

2 1b33
2 2u3

252detb̂. ~12!

After combining Eqs.~7!, ~11!, and ~12!, and taking uuu
5uvu into account, one easily obtains2detb̂512uuu2 @13#.
Consequently, we have

~2detâ !1/45@~2detb̂ !~12uuu2!#1/45A12uuu2. ~13!

One can know from Ref.@10# that PE52k1k2, wherek1
andk2 are the two coefficients in the Schmidt decomposit
uC&5k1ux1 ,y1&1k2ux2 ,y2&, rAB5uC&^Cu, where
$ux1&,ux2&% and$uy1&,uy2&% are orthogonal bases for the Hi
bert spaces of particlesA and B, respectively. It is easy to
prove that k15A(11uuu)/2, k25A(12uuu)/2, which are
square roots of the two eigenvalues of the reduced matrixrA

or rB . Therefore, we havePE5(2detâ)1/4. This ends the
proof.

III. EXAMPLES

Example 1. For the stateuC&5(u00&1u01&1u11&)/A3,
one obtains the density matrix

rAB5uC&^Cu5
1

3 S 1 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

D
with the Bloch vectorsu5(2/3,0,1/3)T, v5(2/3,0,21/3)T,
and the alpha matrix
04430
â5
1

3 S 3 2 0 21

2 2 0 22

0 0 22 0

1 2 0 1

D . ~14!

One can havePE52/3, which is consistent with the result i
Ref. @10#.

Example 2. For the stateuC&5@ u00&12(u01&1u11&)]/3,
the density matrix is

rAB5uC&^Cu5
1

9 S 1 2 0 2

2 4 0 4

0 0 0 0

2 4 0 4

D
with u5(8/9,0,1/9)T, v5(4/9,0,27/9)T, and the alpha ma-
trix

â5
1

9 S 9 4 0 27

8 4 0 28

0 0 24 0

1 4 0 1

D . ~15!

Hence the degree of entanglement isPE54/9.
Example 3. For the maximally entangled stateuC&

5(u00&1u11&)/A2, one obtains the density matrix

rAB5uC&^Cu5
1

2 S 1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

D
with the Bloch vectorsu5v5(0,0,0)T, and the alpha matrix

â5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

D . ~16!

ThusPE51 reaches the highest value.
Example 4. For the disentangled pure staterAB5 1

2 (1
1sW A

•u) ^
1
2 (11sW B

•v), whereuuu5uvu51, we have the al-
pha matrix as

â5S 1 v1 v2 v3

u1 u1v1 u1v2 u1v3

u2 u2v1 u2v2 u2v3

u3 u3v1 u3v2 u3v3

D . ~17!

ObviouslyPE50 indicates thatrAB is disentangled.
3-2



t
W

en
q

le

s

e.

is

of
ties

the
per-

e-

e

of

BRIEF REPORTS PHYSICAL REVIEW A 65 044303
IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a measure to quan
the degree of entanglement for two qubits in a pure state.
would like to make some discussion in the following.

~i! The similar idea developed in this paper could be g
eralized to quantify the degree of entanglement for two
Nits ~i.e., N-state quantum systems,N52 andN53 corre-
spond to a qubit and a qutrit, respectively! @14,15# in a pure
state. For instance, the density matrix for two entang
qutrits could be written as

rAB5
1

9 S 1^ 11A3lW A
•u^ 11A31^ lW B

•v1
3

2

3 (
i , j 51

8

b i j l i
A

^ l j
BD , ~18!

wherel i ( i 51,2, . . . ,8) are theeight Hermitian generator
of SU~3! ~namely, the usual Gell-mann matrices!. For the
state of two entangled qutrits

uC&5 1
3 ~ u00&1u11&1u22&), ~19!

its corresponding density matrix is@15#

rAB5
1

9 S 1^ 11
3

2 (
i , j 51

8

b i j l i
A

^ l j
BD , ~20!

with the nonzero coefficientsb115b335b445b665b8851,
b225b555b77521. The elementsb i j , 1, u and v form a
.
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939 matrix â, it is easy to show thatPE5(2detâ)1/451,
which indicates that the stateuC& in Eq. ~19! is just a maxi-
mally entangled state.

~ii ! After making the parametrizationu5û tanhfu , where
û5u/uuu, the density matrix of a qubitr(u)5(11sW •u)/2
can be connected to the Lorentz boost matrixL(u)
5exp(wusW •û/2)51cosh(wu/2)1sW •û sinh(wu/2) as@16#

r~u!5
L~u!

2 coshfu
, fu5wu/2. ~21!

Obviously,r(u) andL(u) are in one-to-one correspondenc
For the former, the physical meaning of the vectoru is the
Bloch vector in quantum mechanics, while for the latter it
the relativistic velocity. Due to the rapidityw, i.e., the hyper-
bolic angle, special relativity can be formulated in terms
hyperbolic geometry. As a result, some physical quanti
have been found to have geometric significance, such as
Thomas rotation angle corresponds to the defect of a hy
bolic triangle@17,18#. After viewing the Bloch vectoru as an
analogous relativistic velocity, the Bures fidelityF(r1 ,r2)

5(trAAr1r2Ar1)2 was found to have a geometric interpr
tation in the framework of hyperbolic geometry@16#. Simi-
larly, with the aid of the parametrizationu5û tanhfu , it is
not difficult to find that the entanglement degreePE

5A12uuu251/coshfu for two qubits in a pure state is th
reciprocal of the Lorentz factor@18# in the hyperbolic geom-
etry. The extension of our approach to the mixed states
two entangled qubits will be discussed elsewhere.
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