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Characterization of symmetry-protected topological phases in polymerized models
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By using Majorana’s stellar representation, we give a clear geometrical interpretation of the topological phases
of inversion-symmetric polymerized models by mapping the Bloch states of multiband systems to Majorana stars
on the Bloch sphere. While trajectories of Majorana stars of a filled Bloch band exhibit quite different geometrical
structures for topologically trivial and nontrivial phases, we further demonstrate that these structures are uniquely
determined by distributions of Majorana stars of two high-symmetrical momentum states, which have different
parities for topologically different states.
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I. INTRODUCTION

Recently, Majorana’s stellar representation (MSR) has
gained revived interest as it offers an intuitive geometrical
approach to understanding quantum systems with multiple
components by mapping states in the higher dimensional space
as points on a Bloch sphere [1–6]. In general, a quantum state
of spin-1/2 systems or equivalently two-level systems can
be represented as a point on a unit sphere [7], and the
evolution of the quantum state corresponds to a particular
trajectory on the Bloch sphere. By using MSR, which
represents a quantum pure state of spin-J systems in terms
of a symmetrized state of 2J spin-1/2 systems, one can
generalize this geometric approach to large spin systems or
multilevel systems. In terms of MSR, the evolution of a
spin-J state can be intuitively understood by trajectories of
2J points on the two-dimensional (2D) Bloch sphere, with
these 2J points generally coined as Majorana stars (MSs).
This approach naturally provides an intuitive way to study
high spin systems from geometrical perspectives, which has
made the MSR a useful tool in many different fields, e.g.,
classification of entanglement in symmetric quantum states
[8–12], analyzing the spectrum of the Lipkin-Meshkov-Glick
model [13], studying Bose condensate with high spins [14–17],
and calculating geometrical phases of large-spin systems [5,6].

As much of the search for the application of MSR has
focused on high-spin systems, it is interesting to apply this
approach to study the multiband topological systems. It is
well known that a topological insulator distinguishes a trivial
band insulator by its nontrivial topological energy band, which
has different geometrical property from a trivial band [18].
For a two-band system, e.g., the Su-Schrieffer-Heeger (SSH)
model [19], one can map the Bloch state into a 2D Bloch
sphere, and the geometrical meaning of topologically different
phases can be unveiled by their distinct trajectories [20,21].
As a paradigmatic topological model [22], the SSH model
supports either topologically trivial or nontrivial phase,
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characterized by the quantized Berry phase 0 or π [23–25],
which is experimentally measurable as demonstrated in the
recent cold atom experiment [26]. In this work, we shall apply
MSR to study one-dimensional (1D) topologically nontrivial
polymerized systems, which can be viewed as a multiband
generalization of the celebrated dimerized SSH model [19,27]
and were also proposed to be realizable in optical superlattice
systems [28,29]. The application of MSR enables us to investi-
gate the geometrical property of multiband topological systems
by mapping the multilevel quantum states to MSs on the
Bloch sphere. Consequently, a filled Bloch band forms specific
trajectory of MSs on the Bloch sphere, which exhibits very
different geometrical structure for topological or trivial phase.
Furthermore, we unveil that the distinct geometrical structures
of trajectories for topologically different states are closely
related to their parities and determined by the distribution
of MSs at two high-symmetry momentum points. Our study
provides an intuitive way to distinguish topologically different
phases of multiband systems and unveils the intrinsic relation
between the band topology and parity from the geometrical
point of view, which shall deepen our understanding of their
geometrical properties.

II. 1D POLYMERIZED MODEL WITH
INVERSION SYMMETRY

We consider a 1D superlattice with period T (T � 2)
described by the Hamiltonian:

H =
∑

n

T∑
α=1

(tαĉ†α,nĉα+1,n + H.c.), (1)

where ĉT +1,n ≡ ĉ1,n+1 and we require the system having
inversion symmetry by enforcing

tα = tT −α. (2)

For the case with T = 2, it reduces to the SSH model [19].
Models with T � 3 can be viewed as generalizations of the
dimerized SSH model [27], and for convenience, we also refer
to them as polymerized models. As the unit cell consists of T
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sites, the spectrum of the system splits into T bands. By taking
a Fourier transformation ĉα,n = 1/

√
N

∑
k eiknĉαk with α =

1,2, . . . ,T , the Hamiltonian in the momentum space can be
written as H = ∑

k ψ
†
kh(k)ψk with ψk = (c1k,c2k, . . . ,cT k)T

and

h(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1 0 · · · 0 tT e−ik

t1 0 t2 · · · 0 0
0 t2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 tT −1

tT eik 0 0 · · · tT −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

For the general case with arbitrary tα , the system does not have
topologically nontrivial properties. Nevertheless, when the
system has inversion symmetry, it may support topologically
nontrivial phase characterized by the quantized nontrivial
Berry phase or the emergence of doubly degenerate edge states
for the open chain [29]. For convenience, we shall focus our
study on a concrete case with T = 3 in the present work, and
also show our results can be directly generalized to cases with
larger periods, e.g., the case with T = 4.

For the T = 3 superlattice model or trimerized model
with inversion symmetry, the hopping amplitudes can be
parametrized as

t1 = t2 = t(1 − δ), t3 = t(1 + δ), (4)

where t = 1 is taken as the unit of energy and |δ| < 1 is set.
The spectrum is split into three bands and gap between bands
is always open for any nonzero δ. Considering the state with
the lowest band being fully filled, we find that the state is
topologically different for δ > 0 and δ < 0. For the open chain
with the length L = 3N , there appear degenerate edge states
at both ends for δ > 0 but none for δ < 0. This result suggests
that there exists a topological phase transition by varying δ

with the transition point at δ = 0. For the periodic chain, the
topological phase transition can be characterized by the change
of the Berry phase of the system, i.e., the Berry phase γ = π

in the topological phase and γ = 0 in the trivial phase. Here
the Berry phase across the Brillouin zone (BZ), also known as
Zak phase [24], is defined as γ = i

∮ 〈�(k)| d
dk

|�(k)〉dk with
�(k) denoting the occupied Bloch states.

The existence of topological states in our polymerized
models is protected by inversion symmetry [29,30]. In
the momentum space, the inversion symmetry means that
P̂ h(k)P̂ −1 = h(−k), where the inversion operator P̂ is an
antidiagonal matrix with the matrix element given by Pi,j =
δi,T +1−j . The system also has time reversal symmetry, which
leads to T̂ h(k)T̂ −1 = h(−k); here the time reversal operator
T̂ is just the complex-conjugation operator K̂ . As we shall see
in the following context, both the inversion and time reversal
symmetries give some restrictions on the MSR of Bloch states,
which plays an important role in determining trajectories of
MSs of topologically different states.

III. MAJORANA REPRESENTATION AND BERRY PHASE

For a T -band system, the Bloch state can be expressed
as |�(k)〉 = ∑T

α=1 Cα(k)|α〉k . To represent this multilevel
state by MSs, it is convenient to map the state to a spin-

J state |�(k)〉 = ∑J
m=−J Cm(k)|J,m〉 with J = (T − 1)/2.

There is a one-to-one correspondence between parameters
Cα(k) and Cm(k) by taking m = α − 1 − J . According to
Schwinger boson representation theory [2], the angular mo-
mentum operators can be described by creation and an-
nihilation operators of two mode bosons, â+, â, and b̂+,
b̂, and the state |J,m〉 can be expanded by |J,m〉 = [(J +
m)!(J − m)!]−1/2(â+)J+m(b̂+)J−m|φ〉, where |φ〉 is defined by
â+|φ〉 = |↑〉 and b̂+|φ〉 = |↓〉. With the help of Schwinger
representation, the state �(k) can be factorized as

|�(k)〉 = 1

NJ

2J∏
j=1

(
cos

θj

2
â+ + sin

θj

2
eiφj b̂+

)
|φ〉, (5)

where NJ is the normalization coefficient. If we denote
xj = tan θj

2 eiφj , then the factorization parameters θj and φj

can be determined by the roots of the following polynomial
equation [1]:

2J∑
j=0

(−1)jCJ−j (k)√
(2J − j )!j !

x2J−j = 0. (6)

From Eq. (5), it is obvious that |�(k)〉 can be viewed as the
product of 2J spin- 1

2 states with |uj 〉 = (cos θj

2 , sin θj

2 eiφj )T ,
and a given T -band Bloch state can be described by T − 1
MSs on the Bloch sphere.

Considering the time reversal symmetry and inversion
symmetry of the inversion-invariant polymerized model, we
can directly get the eigenstate |�〉 fulfilling the following
relations:

|�∗(k)〉 = |�(−k)〉, (7)

|�∗(k)〉 = P̂ |�(k)〉. (8)

From Eq. (7), we get C∗
j (k) = Cj (−k). So if x(k) = tan θ

2 eiφ

is the solution of Eq. (6), then x∗(k) must be the solution
of

∑2J
j=0(−1)jCJ−j (−k)/

√
(2J − j )!j !x∗2J−j = 0. In other

words, for any star 	uj (k) of [θj (k),φj (k)], there must exist a
star 	ul(−k) satisfied θj (k) = θl(−k), φj (k) = −φl(−k). So the
whole trajectory of MSs for a filled Bloch band is symmetric
about the meridian of the Bloch sphere. Similarly, from
Eq. (8), we have CJ−j (k) = C∗

j−J (k), j = 0,1, . . . ,n. So if

x = tan θ
2 eiφ is a solution of Eq. (6), x ′ = ( 1

x
)∗ = tan π−θ

2 eiφ is
also a solution. That is to say, for a fixed momentum k, any star
	uj of (θj ,φj ) corresponds to a star 	ul of (θl = π − θj ,φl = φj ),
unless 	uj lies on the equator. So the whole trajectory of MSs
for a filled band is always symmetric about the equator.

In terms of the MSR, the Berry phase for the T -band
polymerized model can be represented as a sum of two parts,
γ = γ0 + γc, where

γ0 =
∑

j

γj = −
∑

j

1

2

∮
(1 − cos θj )dφj ,

and the phase

γc = 1

2

2J∑
i<j

∮ 	ui × 	uj · d(	uj − 	ui)

N2
J

∂N2
J

∂dij
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represents correlations between any two MSs [6], where 	ui is a
function of k and the integral is carried out along the evolution
paths of MSs as the momentum goes over the BZ. By using
symmetries of MSs, we can prove that γc = 0 as the sum-
mation terms of correlations cancel out each other (see the
Appendix for details). Consequently, the Berry phase of the
occupied Bloch band is simplified to the sum of Berry phases
of MSs on the Bloch sphere, generated by the evolution of each
star. Since the MSs either appear in pairs, in terms of 	uj and
	ul(θl = π − θj ,φl = φj ) for θj �= π

2 , or locate in the equator,
we can further simplify the expression of the Berry phase by
using

∑
j cos θj = 0. Finally, the Berry phase of an occupied

Bloch band is simplified to

γ = −
∑

j

1

2

∮
dφj , (9)

which is the sum of integrals of each MS along its projecting
trace on the equator.

For the trimerized model parametrized by Eq. (4), the
eigenstate |�(k)〉 can be described by two MSs. As k goes
across the BZ, trajectories of the lowest Bloch band for cases
with δ < 0 and δ > 0 are shown in Figs. 1(a) and 1(b),
respectively. It is obvious that trajectories for topologically
different states display distinct geometric structures. Here, in
the topologically trivial phase, the Berry phase of each star
cancels out. However, in the topologically nontrivial phase,
the trajectories of two stars splice together to cover the whole
equator, which gives γ = π . To see this more clearly, we show
the change of φi as a function of momentum in Figs. 1(c)
and 1(d), corresponding to Figs. 1(a) and 1(b), respectively.

FIG. 1. (Color online) Trajectories of MSs for the lowest Bloch
band of the trimerized model with inversion symmetry. The blue and
red curves represent different MSs. (a) Topologically trivial state with
δ = −0.2; the Berry phase is γ1 = 0.404, γ2 = −0.404, and γc = 0.
(b) Topologically nontrivial state with δ = 0.2; the Berry phase is
γ1 = −2.216, γ2 = −0.925, and γc = 0. Figures (c) and (d) show the
change of φ of MSs for the lowest Bloch band of trimerized model
as k goes from −π to π , corresponding to (a) and (b), respectively.

2
πθ =

0φ =

x*x

FIG. 2. Schematic plot for the distribution of Majorana stars of
high-symmetry momentum state. At the high-symmetry point, every
four stars form a group which is mirror-symmetrical about both the
meridian and equator.

For the topologically trivial case, as k goes from −π to π ,
the integral over φ for each star cancels out each other, which
generates a zero Zak phase.

Next we show that different topological structures of
trajectories of MSs are closely related to properties of MSs
at k = 0 and k = π . At these high-symmetry points denoted
by ks , which fulfills ks = −ks up to a reciprocal lattice
vector, we have T̂ h(ks)T̂ −1 = h(ks) and P̂ h(ks)P̂ −1 = h(ks).
These symmetries suggest that the distribution of MSs for the
high-symmetry state �(ks) must be mirror symmetrical about
both the meridian and equator. The state �(ks) also has a
certain parity, i.e., P̂ |�(ks)〉 = ξ (ks)|�(ks)〉 with ξ (ks) = ±1,
and the parity ξ of a filled Bloch band is given by the product
of ξ (0) and ξ (π ). Using the expression of P̂ , we get

CJ−j (ks) = ξ (ks)Cj−J (ks), (10)

ξ (ks)e
i
∑

j φj = 1, (11)

where all coefficients Cj (ks) are real due to the time-reversal
symmetry. Substituting (10) into Eq. (6), we find that if xj is
the solution of the equation, then x∗

j , 1
xj

, and ( 1
xj

)∗ are also the
solutions, i.e., the Majorana stars for the high-symmetry state
are mirror symmetrical about both the meridian and equator,
as schematically shown in Fig. 2. If θj = π

2 , the four stars are
degenerated to two stars on the equator; if φj = 0 or π , the stars
are degenerated to two stars on the meridian; and if θj = π

2
and φj = 0 or π , all the stars are degenerated to a single star.
For the odd-parity state, ξ (ks) = −1, and we get

∑
j φj = π

from Eq. (11), while for the even-parity state, ξ (ks) = 1, and
we get

∑
j φj = 0.

For the trimerized model with T = 3, there are only two
Majorana stars corresponding to a high-symmetry momentum
state. For the odd-parity state, the stars must be located at
	u1(π

2 ,0) and 	u2(π
2 ,π ) in order to fulfill the mirror-symmetry

conditions and the condition of φ1 + φ2 = π simultaneously.
While for the even-parity state, the stars can be located at
	u1(π

2 ,φ) and 	u2(π
2 , − φ) or at 	u1(θ,0) and 	u2(π − θ,0), or at

	u1(θ,π ) and 	u2(π − θ,π ). To see it clearly, we display the
distribution of MSs at the high-symmetry points for both the
topologically trivial [in Fig. 3(a)] and nontrivial phases [in
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FIG. 3. (Color online) MSR for the high-symmetrical momen-
tum state of the trimerized model with (a) δ = −0.2 and (b) δ = 0.2,
respectively. Blue points and red stars correspond to the state at k = 0
and k = π , respectively. While the parity for the point of k = π is
always even, the parity for the point of k = 0 can be even for the
trivial phase (a) or odd for the topological phase (b).

Fig. 3(b)]. While the parity of �(π ) is always even with ξ (π ) =
1 for both phases, we have ξ (0) = 1 for the trivial phase, and
ξ (0) = −1 for the topological phase.

As the topologically trivial and nontrivial phases have
different parities, next we unveil the Berry phase of the
corresponding Bloch band can be uniquely determined by
distributions of MSs at two high-symmetry points. To calculate
the Berry phase, it is convenient to project the trajectory of
MSs on the Bloch sphere to the equator, according to Eq. (9).
Consequently the MSs symmetrically located above and below
the equator merge to the same point. Then, we divide the BZ
into two parts (0,π ) and (π,2π ), and we just need to consider
the interval (0,π ) as the integral of φ over the interval (π,2π )
[equivalently (−π,0)] gives the same contribution to the Berry
phase as over the interval (0,π ), according to the symmetry
analysis. Hence the Zak phase γ is just the double of the
Berry phase as k integrates from 0 to π . In the topologically
trivial phase, when k = 0, both MSs are located at “O1” on
the projected equator shown in Fig. 4(a). As k travels from
0 to π , the stars move to �1 and �2, generating changes
of polar angles 
φ1 = 2mπ + α1 and 
φ2 = 2nπ − α1,
respectively, where m,n can be any integer. From Eq. (9), we
get the Zak phase γ = −(
φ1 + 
φ2) = −2(m + n)π , i.e.,
γ mod (2π ) = 0. In the topologically nontrivial phase, MSs
corresponding to the k = 0 state are located at O1 and O2,

FIG. 4. (Color online) Schematic plot for the change of polar
angle of MSs when k goes from 0 to π , (a) for topologically trivial
phase, and (b) and (c) for topologically nontrivial phase. Here Oj

correspond to MSs at k = 0 and �j to MSs at k = π .

FIG. 5. (Color online) MSR for the topologically trivial and
nontrivial state of the tetramerized model with (a) δ = −0.2 and
(b) δ = 0.2, respectively. The blue, red, and green curves represent
different MSs. Blue points and red stars represent MSs of states at
k = 0 and k = π , respectively. Figures (c) and (d) display the change
of φ of MSs as k goes from −π to π , corresponding to (a) and (b),
respectively.

and there are two possibilities for the evolution of state from
k = 0 to k = π , as shown in Figs. 4(b) and 4(c). For the case of
Fig. 4(b), O1 moves to �1 and O2 to �2 as k goes from 0 to π ,
with corresponding changes of polar angles given by 
φ1 =
2mπ + α2 and 
φ2 = 2nπ + β2. Since α2 + β2 = π , we get
the Zak phase γ = −2(m + n)π − π , i.e., γ mod (2π ) = π .
For the case of Fig. 4(c), we can get the same conclusion by
following similar discussions.

Our results can be directly generalized to general polymer-
ized models with inversion symmetry. Concretely, we consider
a tetramerized model with t1 = t3 = t , t2 = t(1 − δ), and
t4 = t(1 + δ), and take t = 1 and |δ| < 1. Similar to the case of
T = 3, there exists a topological phase transition occurring at
δ = 0, with δ < 0 corresponding to the trivial phase and δ > 0
the topologically nontrivial phase. The analysis of geometric
meaning is analogous to the trimerized model despite being a
little more complicated.

For the tetramerized model with T = 4, each state in the
momentum space is represented by three MSs, and their
trajectories over the BZ are shown in Figs. 5(a) and 5(b)
for topologically trivial and nontrivial phases, respectively.
MSs in two high-symmetry points are also marked on the
trajectories. In the topologically trivial phase, all trajectories of
MSs go back and forth, whereas in the topologically nontrivial
phase, the trajectories form a close circle and cover the equator
completely. Consequently, Zak phases for the topologically
trivial and nontrivial states are 0 and π , corresponding to
Figs. 5(c) and 5(d), respectively. Similarly, different MS
distributions at k = π for topologically trivial and nontrivial
states indicate that they have different parities.
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IV. SUMMARY

In summary, we have unveiled the geometrical properties
of topological phases of 1D inversion-invariant multiband
systems from trajectories of MSs, which exhibit different
topological structures for topologically different phases. By
utilizing the symmetric properties of MSs, we found that
the Zak phase of a filled band can be represented as the
summation of integral of each MS along its projecting trace
on the equator, and takes 0 and π for topologically trivial and
nontrivial phases, respectively. We further demonstrated that
the topological structure of the trajectory of MSs is closely
related to the parity of the system, which is determined by
properties of Bloch states at two high-symmetry points.
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APPENDIX: CALCULATION OF CORRELATION PHASE

The correlation phase γc in the main text can be represented
as γc = ∮

dγc with

dγc = 1

2

2J∑
i<j

	ui × 	uj · d(	uj − 	ui)

N2
J

∂N2
J

∂dij

, (A1)

where the normalization coefficient NJ is a symmetric function
for permuting any two stars 	ui and 	uj , and dij = 1 − 	ui · 	uj

is the distance. It is clear that γc is a sum of correlations
between any two stars. Due to the existence of time reversal
symmetry and inversion symmetry, the Majorana stars for a
Bloch state with fixed momentum k distribute either on the
equator or symmetrically about the equator. So the distribution
of Majorana stars for a Bloch state can be schematically
displayed in Fig. 6, where Ai are the stars above the equator,
Bi are the corresponding ones below the equator symmetrical
to Ai , and Ci are on the equator.

First, we calculate the correlation between Ai and Aj and
the corresponding correlation between Bi and Bj , which are
given by

dγcAiAj
= dk

2

∣∣∣∣∣∣
sin θAi

cos φAi
sin θAi

sin φAi
cos θAi

sin θAj
cos φAj

sin θAj
sin φAj

cos θAj

α11 α12 α13

∣∣∣∣∣∣
× ∂N2

J

N2
J ∂dAiAj

(A2)

and

dγcBiBj
= dk

2

∣∣∣∣∣∣
sin θBi

cos φBi
sin θBi

sin φBi
cos θBi

sin θBj
cos φBj

sin θBj
sin φBj

cos θBj

α21 α22 α23

∣∣∣∣∣∣
× ∂N2

J

N2
J ∂dBiBj

, (A3)

FIG. 6. (Color online) Schematic plot for the distribution of all
the Majorana stars on the θ − φ plane for a Bloch state with fixed k.
The stars are classified into three classes denoted by Ai , Bi , and Ci ,
respectively.

where

α11 = (
cos θAj

cos φAj
θ ′
Aj

− sin θAj
sin φAj

φ′
Aj

) − (j → i),

α12 = (
cos θAj

sin φAj
θ ′
Aj

+ sin θAj
cos φAj

φ′
Aj

) − (j → i),

α13 = − sin θAj
θ ′
Aj

− (j → i),

α21 = (
cos θBj

cos φBj
θ ′
Bj

− sin θBj
sin φBj

φ′
Bj

) − (j → i),

α22 = (
cos θBj

sin φBj
θ ′
Bj

+ sin θBj
cos φBj

φ′
Bj

) − (j → i),

α23 = − sin θBj
θ ′
Bj

− (j → i).

Since θAi
= π − θBi

and φAi
= φBi

, we have dAiAj
= dBiBj

,
∂N2

J

N2
J ∂dAiAj

= ∂N2
J

N2
J ∂dBiBj

, θ ′
Ai

= −θ ′
Bi

, and φ′
Ai

= φ′
Bi

, where θ ′ =
dθ/dk and φ′ = dφ/dk. Substituting them into (A2) and (A3)
we find that dγcAiAj

+ dγcBiBj
= 0. Similarly, we can derive

dγcAiBj
+ dγcBiAj

= 0, dγcAiCl
+ dγcBiCl

= 0.
For the correlation between Ai and Bi , we know that

θAi
= π − θBi

= θ and φAi
= φBi

= φ, so

dγcAiBi
= dk

2

∣∣∣∣∣∣
sin θ cos φ sin θ sin φ cos θ

sin θ cos φ sin θ sin φ − cos θ

0 0 2θ ′ sin θ

∣∣∣∣∣∣
× ∂N2

J

N2
J ∂dAiBi

= 0.

At last, the correlation between Cl and Ck is always 0, because
they are on the same plane so that 	ul × 	uk · d(	ul − 	uk) vanishes
apparently. Hence we have

dγc = (
dγcAiAj

+ dγcBiBj

) + (
dγcAiBj

+ dγcBiAj

)
+ (

dγcAiCl
+ dγcBiCl

) + dγcAiBi
+ dγcClCk

= 0,

and the sum of correlation phases γc is zero as the summation
terms cancel out each other.
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