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Spin–orbit-coupled Bose–Einstein condensates (BECs) provide a powerful platform for studies on physical 
problems in various fields. Here we study the energy spectrum of a tunable spin–orbit-coupled BEC in 
a double-well potential with adjustable Raman laser intensity. We find in the single-particle spectrum 
there is a highly degenerate flat band in the ground state of the BEC, which remains stable against 
changes of the Raman strength. Many-body interactions between atoms remove this high degeneracy. 
Analytical results for particular cases are obtained by using the perturbation theory, which are in good 
agreement with the numerical results.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Benefited from the development of artificial gauge fields [1–7], 
experiments have successfully realized an 87Rb Bose–Einstein con-
densate (BEC) with spin–orbit coupling [8]. The same scheme has 
been subsequently extended to realize spin-orbit-coupled (SOC) 
Fermi gases [9,10]. These experimental achievements have stimu-
lated a growing interest in researches on spin–orbit-coupled quan-
tum gases, such as quantum phase transition [11], topological ex-
citations [12], Majorana fermions [13], and spintronic devices [14].

Recently, SOC BECs in a double-well potential have been in-
vestigated [15–19], focusing on the quantum dynamics, Josephson 
effects, and macroscopic self-trapping with weak and strong Ra-
man strength. SOC BECs in a double-well potential provide insight 
into the phenomena of the interplay between interatomic inter-
actions and spin–orbit coupling, and thus serve as a platform for 
quantum simulation and are worth more in-depth investigation.

In this Letter, we study a tunable SOC BEC in a double-well 
potential through modulation of the Raman laser intensity, which 
can be easily implemented in experiments [8]. Here we focus on 
the energy spectrum of an SOC BEC in a double-well potential, 
which may provide an insight into the dynamics. For the linear 
case, with the changes of the Raman strength, there is a flat band 
for the ground state of the BEC. In this case, a system of N non-
interacting bosons is characterized by an (N + 1)-fold degenerate 

E-mail addresses: hcao.physics@gmail.com (H. Cao), lbfu@iapcm.ac.cn (L.-B. Fu).
http://dx.doi.org/10.1016/j.physleta.2015.04.028
0375-9601/© 2015 Elsevier B.V. All rights reserved.
state. Weak interactions between atoms remove this large degener-
acy. However, for a group of energy levels that lie on the same flat 
band in the linear case, energy difference is very small. With the 
help of perturbation theory, some analytical results are obtained, 
which agree well with the numerical results.

The outline of the Letter is as follows. First, we introduce 
the total Hamiltonian for an N-atom SOC BEC in a symmetrical 
double-well potential. Following this, we numerically diagonalize 
the Hamiltonian and study the energy spectrum of the SOC BEC 
without interactions, and flat band is analyzed in-depth. Then, we 
study the lowest flat band in the presence of atom interactions. 
Some analytical results are obtained with the help of perturbation 
theory. Finally, we give a brief conclusion.

2. The total Hamiltonian

Spin–orbit coupling in the ultracold 87Rb atoms was experi-
mentally realized recently at NIST [2], in which the Raman dressing 
scheme is based on coupling two atomic hyperfine states of 5S1/2, 
|F = 1, mF = 0〉 and |F = 1, mF = −1〉, labeled as spin-up |↑〉 and 
spin-down |↓〉, respectively. We consider such an SOC BEC in a 
double-well potential, with the wells indicated by l and r, respec-
tively. To investigate the dynamics of the system, we adopt the 
two-mode approximation. Then, the total Hamiltonian for such an 
N-atom SOC BEC in a symmetrical double-well potential can be 
written as

Ĥ = Ĥ0 + Ĥ int. (1)
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Fig. 1. (Color online.) Energy spectrum in the non-interaction case, where J = 0.2, 
β = 0.5, and N = 6.

The single-atom Hamiltonian is given by

Ĥ0 = J↑↑(â†
l↑âr↑ + âl↑â†

r↑) + J↓↓(â†
l↓âr↓ + âl↓â†

r↓)

+ J↑↓(â†
l↑âr↓ + âl↑â†

r↓) + J↑↓(â†
l↓âr↑ + âl↓â†

r↑)

+ �

2
(â†

l↑âl↓ + âl↑â†
l↓ + â†

r↑âr↓ + âr↑â†
r↓). (2)

Here the operator â jσ (â†
jσ ) is the annihilation (creation) operator 

for spin σ (σ =↑, ↓) in the j ( j = l, r) well, � is the Raman cou-
pling strength, J↑↓ induced by the Raman coupling is the interwell 
spin-flip tunneling amplitude, and Jσσ is the Josephson tunneling 
amplitude between left and right wells.

The two-body interactions between atoms are described by

Ĥ int = 1

2

∑
j

(
g↑↑
N

â†
j↑â†

j↑â j↑â j↑ + g↓↓
N

â†
j↓â†

j↓â j↓â j↓

+ 2g↑↓
N

â†
j↑â†

j↓â j↑â j↓), (3)

where gσσ ′ with σ , σ ′ = ↑, ↓ is the interaction strength. For 87Rb 
atoms, the differences between the spin-dependent nonlinear co-
efficients are very small and contribute only small modifications 
to the collective behavior [20]. In the present Letter, we take 
gσσ = gσσ ′ = g .

The above parameters are all tunable in experiments [8], which 
can be achieved by adjusting the trapping potential and the angle 
between Raman lasers. The interwell spin-flip tunneling amplitude 
is linearly dependent on the Raman coupling [15], and we denote 
it as J↑↓ = β�. For simplicity, we take J↑↑ = J↓↓ = J .

3. Energy spectrum of the SOC BEC

In order to study the energy spectrum of the SOC BEC, one 
can numerically diagonalize the Hamiltonian in ND = (N + 3)(N +
2)(N + 1)/6 dimensional space spanned by the many-body Fock 
basis {|Nl↑, Nl↓, Nr↑, Nr↓〉}, where N jσ is the number of bosons 
with spin σ in the j well. The eigenfunctions and eigenenergies 
can be derived as

|ψ〉 =
ND∑

k=1

ck|Nl↑, Nl↓, Nr↑, Nr↓〉, E = 〈ψ |Ĥ|ψ〉. (4)

Without the interactions between atoms, we numerically diago-
nalize the Hamiltonian Ĥ0. The energy spectrum is shown in Fig. 1
with J = 0.2 and N = 6 as an example. One can see there are three 
groups of degenerate points, at � = −2 J , 0 and 2 J , respectively. 
Detailed analysis of these degenerate points is presented in the fol-
lowing of this section. There are a group of flat bands between two 
critical values of Raman strength �∗ = ±2 J . When increasing the 
absolute value of Raman strength |�|, the energy decreases when 
|�| > �∗ , while the energy remains stable in the flat band.

The energy spectrum without interactions can be obtained an-
alytically. To this end, we introduce the quasi-particle Bose opera-
tors, Â1 = (âl↑ − âl↓ + âr↑ − âr↓)/2, Â2 = (−âl↑ − âl↓ + âr↑ + âr↓)/2, 
Â3 = (âl↑ − âl↓ − âr↑ + âr↓)/2, and Â4 = (âl↑ + âl↓ + âr↑ + âr↓)/2. 
These operators obey the usual commutation relation [ Âi, Â

†
j] =

δi j . By using these operators, the above Hamiltonian (2) is rewrit-
ten in a more convenient form as

Ĥ A
0 = ( J − β� − �

2
)n̂1 + (− J − β� + �

2
)n̂2

+ (− J + β� − �

2
)n̂3 + ( J + β� + �

2
)n̂4. (5)

Here, n̂i ≡ Â†
i Âi is the quasi-particle number operator. From Eq. (5), 

the Hamiltonian without interaction is strictly diagonalized. For 
the cases we study in the present Letter, i.e. β = 0.5, the Hamilto-
nian (5) can be simplified to the following form

Ĥ A
0 = J (n̂1 − n̂2 − n̂3 + n̂4) − �(n̂1 − n̂4). (6)

For the groups of degenerate points at critical values � = ±2 J , 
energy E = − J (N − 4n̂4) can be obtained from Eq. (6) a long with 
the particle number conserved condition. As the value of n̂4 is in 
the range from 0 to N , there are N +1 points at the critical Raman 
strength � = 2 J . The i-th point has [(N + 2 − i)(N + 1 − i)/2]-fold 
degeneracy, here i = 0, 1, 2, . . . , N for energy from low to high. 
For the group of degenerate points at the critical Raman strength 
� = 0, one also obtain the energy E = − J [N − 2(n̂1 + n̂4)] from 
Eq. (6) together with the particle-number conservation condition. 
As the value of n̂1 + n̂4 is in the range from 0 to N , there are also 
N + 1 points and the i-th point has [(i + 1)(N − i + 1)]-fold degen-
eracy.

As for the flat bands, since the energy is independent on the 
Raman strength, the condition n̂1 = n̂4 is required in Eq. (6). For 
each flat band, the energy can be obtained: E = − J (N − 4n̂4). The 
number of flat bands is related to the parity of the particle number, 
i.e. (N + 1)/2 or N/2 + 1 for the quasi-particle number being odd 
or even. For the i-th flat band, the value of energy is − J (N − 4i)
with (N −2i +1)-fold degeneracy (here i = 0, 1, 2, . . . , N for energy 
from low to high). In the following, we mainly focus on the lowest 
flat band. The condition n̂1 = n̂4 = 0 is satisfied. The lowest flat 
band energy is − J N with (N + 1)-fold degeneracy.

4. Flat band with the interaction between atoms

When the atomic interaction is included, the degeneracy of the 
flat band will be removed. In Fig. 2, we show the energy spectrum 
for an SOC BEC with g = 0.05, J = 0.2, and N = 6 as an example.

It is clear that the interactions remove the degeneracy of the 
flat band, and shift the spectrum upwards as well. However, for a 
group of energy levels that lie on the same flat band in the linear 
case, energy difference between separated energy levels is actu-
ally quite small. In Fig. 3, we show the difference between the 
energy maximum E N+1 and minimum E1 of the lowest band � =
E N+1 − E1.

In the region |�| > �∗ , the difference � is larger than that in 
the flat-band region |�| < �∗ . With changes of Raman strength, 
the difference changes relatively slow in the flat band, while it 
changes fast in the other regime. We also notice the difference de-
creases with the increasing of the particle number.
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Fig. 2. (Color online.) Lowest flat-band energy spectrum with atom interaction, 
where J = 0.2, β = 0.5, g = 0.05, and N = 6.

Fig. 3. (Color online.) Energy difference between the energy maximum EN+1 and 
minimum E1 of the lowest band � = EN+1 − E1, where J = 0.2, β = 0.5, and g =
0.05. The inset shows energy difference of lowest flat-band verses particle number 
N when Raman strength � = 0.5�∗ .

For quite weak interaction, perturbation theory is applicable 
with the atomic interaction as the perturbation terms. In the quasi-
particle representation, the two-body interaction Hamiltonian be-
comes

Ĥ A
int = g

4N
(
∑

i

Â†
i Â†

i Âi Âi + Â†
1 Â†

1 Â3 Â3 + Â†
3 Â†

3 Â1 Â1

+ Â†
2 Â†

2 Â4 Â4 + Â†
4 Â†

4 Â2 Â2 + 2n̂1n̂2 + 4n̂1n̂3

+ 2n̂1n̂4 + 2n̂2n̂3 + 4n̂2n̂4 + 2n̂3n̂4 + 2 Â†
1 Â†

2 Â3 Â4

+ 2 Â†
1 Â†

4 Â2 Â3 + 2 Â†
2 Â†

3 Â1 Â4 + 2 Â†
3 Â†

4 Â1 Â2).

As previously discussed, for the lowest flat band, no parti-
cles distribute in the quasi-particle modes A1 and A4, and the 
degenerate subspace for the lowest flat band is constructed by 
| j〉 = |0, j, N − j, 0〉, i.e.,

| j〉 = 1√
j!(N − j)! ( Â†

2)
j( Â†

3)
N− j|vac〉. (7)

In the spirit of the degenerate perturbation theory, the first-
order perturbation can be obtained by letting degenerate sub-
space {| j〉} be the complete collection of degenerate eigenstates of 
Ĥ A

int. The required energy correction in first-order approximation is 
given by
E(1)
j = 〈 j|Ĥ A

int| j〉 = g

4
(N − 1).

We notice that the first-order perturbation does not remove the 
high degeneracy of the flat band. In this case, we naturally take 
into consider the influence of the states {|k〉} which do not belong 
to the flat band {| j〉}. Then, the required energy correction is given 
by

E(2)
j =

∑
j 
=k

〈 j|Ĥ A
int|k〉〈k|Ĥ A

int| j〉
E(0)

j − E(0)

k

= (
g

4N
)2

(
(N − j)(N − j − 1)

� − 2 J
− j( j − 1)

� + 2 J
− j(N − j)

J

)
.

Now the degeneracy of flat band is totally removed. The perturbed 
energy in the flat band is

E j = E(0)
j + E(1)

j + E(2)
j , (8)

where E(0)
j = − J N is the flat band energy without interactions. 

The results are in good agreement with the numerical results, as 
shown in Fig. 2. The results also show the critical value of the 
Raman strength � for the flat band. The difference between the 
energy maximum E N+1 and minimum E1 is

� = − g2�(N − 1)

8N(� + 2 J )(� − 2 J )
, (9)

which is in good agreement with the numerical result shown in 
Fig. 3.

5. Conclusion

In summary, we show the energy spectrum of a tunable SOC 
BEC in a double-well potential through modulation the Raman 
laser intensities. Such tunable spin–orbit coupling provides a pow-
erful tool for exploring SOC superfluid physics in future experi-
ments. For the single-particle spectrum, there is a flat band in 
the ground state, with the energy independent on the variation 
of the Raman strength. In this case, a system of N non-interacting 
bosons is characterized by an (N + 1)-fold degenerate state. Many-
body interactions between atoms remove this high degeneracy, but 
the energy difference is very small. By using the perturbation the-
ory with interaction as the perturbation, analytical results are ob-
tained, which agree well with the numerical results. This results 
related to a huge degeneracy may lead to possible phases with 
non-trivial topological properties, and may have important appli-
cations in quantum information and quantum optics.
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