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Abstract – As is well known Fano resonance arises from the interference between a localized state
and a continuum state. Using the standard Floquet theory and the scattering matrix method,
we study theoretically the massive Dirac particle transmission over a quantum barrier with an
oscillating field. It is found that the massive relativistic particles can generate not only normal
Fano resonance in the transmission due to the interference between a localized state (bound state)
and the continuum state, but also anomalous Fano resonance due to the interference between
a delocalized state (extended state) and the continuum state. The dependence of line shapes
on driving parameters for these two kinds of Fano resonances is quite different. For normal Fano
resonance the asymmetry parameter is approximately proportional to a power law of the amplitude
of the oscillating field, while for the anomalous Fano resonance the asymmetry parameters change
slightly with different oscillation amplitudes. In practice, the anomalous Fano resonance can be
identified by observing asymmetry parameters in experiment.

Copyright c© EPLA, 2015

Introduction. – Fano resonance [1], an intriguing
quantum phenomenon originating from the interference
between a continuum energy band and an embedded dis-
crete energy level, has been extensively studied in different
systems [2]. The striking signature of Fano resonance is
its unique asymmetric lineshape which is distinctively dif-
ferent from the conventional symmetric resonance. As a
fundamental phenomenon, Fano resonance finds a broad
range of applications, such as sensing and switching [3].

The interest in the investigation of Fano resonance
in a relativistic environment is greatly motivated by
the exotic properties and easy experimental implementa-
tions of Dirac quasiparticles in graphene and/or artificial
graphene [4]. These systems provide promising platforms
to test the fundamental relativistic physics, such as
Zitterbewegung [5,6] and Klein tunnelling [7]. The exper-
imental [8,9] and theoretical [10,11] studies on few-layer
graphene demonstrate that Fano resonance is an impor-
tant probe to reveal the properties of graphene.

(a)E-mail: lbfu@iapcm.ac.cn

In this paper, we theoretically study the transportation
of a massive Dirac particle in an oscillating potential bar-
rier. Due to the oscillating barrier, the Fano resonance
of the massless [12,13] and massive [14] Dirac particle de-
velops to a set of photon-assisted sidebands. The Klein
tunneling is shown to be suppressed by the irradiation of
a strong laser field, and the bound states may offer dis-
crete energy levels to confine the Dirac particle in the bar-
rier [13,14]. Here we adopt the interferometer geometry
which is realized by a time-periodic barrier and study the
Fano resonance with the Floquet theory. We find that,
when the energy of the incident particle matches the reso-
nance condition, the interferences between the continuum
and bound state will lead to the appearance of the asym-
metric normal Fano resonance. However, when the fre-
quency of the oscillating barrier is higher than the mass of
the particle (frequency and mass in energy unit), one will
find new Fano resonances in the transmission coefficient.
They belong to supercritical resonances because positive-
energy states connect to a negative-energy state, and
the incident particle’s energy matches a negative-energy
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state’s frequency. The new resonances correspond to the
interference of the continuum and extended state, the lat-
ter one is the negative-energy solution of the Dirac equa-
tion. The new kind of resonances is quite different from
the normal Fano resonance. For normal Fano resonances,
the asymmetry parameter decreases as the power of the
oscillation amplitude, however for the anomalous Fano res-
onance the asymmetry parameters remain approximately
constants with the increase of the oscillation amplitude.

Model. – We consider a Dirac particle transmitting
through a one-dimensional time-periodic potential barrier
which extends from −a/2 to a/2 (see fig. 1(a)), that is

V (x, t) =

{
V0 + V cos(ωt), −a/2 ≤ x ≤ a/2,

0, otherwise.
(1)

Here V0 is the static barrier height, V and ω denote the
amplitude and the frequency of the applied oscillating
field, respectively. A relativistic particle motion with mass
m may be described by the time-dependent Dirac equation

i�
∂

∂t
Φ(x, t) = ĤΦ(x, t) (2)

with the Hamiltonian

Ĥ = −i�cσx
d
dx

+ V (x, t) + σzmc2, (3)

where c denotes the (effective) velocity of light, σ̂x,z are
the Pauli matrices.

The incident Dirac particle is incident from the left and
passes three regions denoted by I, II, III, respectively.
The Floquet solution of eq. (2) for a given incident energy
E can be written as

Φi(x, t) =
+∞∑

n=−∞

+∞∑
l=−∞

⎡
⎣ai

l

⎛
⎝ 1

plc

El − V0 + mc2

⎞
⎠ eiplx

+ bi
l

⎛
⎝ 1

−plc

El − V0 + mc2

⎞
⎠ e−iplx

⎤
⎦Jn−l

(
V

�ω

)
e−iEnt/�,

(4)

where Jn is the Bessel function of the first kind, ai
l and bi

l

are constant coefficients. In the barrier region i = II,
pl is pl = sgn(El − V0)

[
(El − V0)2 − m2c4

]1/2
/c and

El = E + l�ω. Outside the barrier region i = I, III, pl

is p′l = sgn(El)
[
(El)2 − m2c4

]1/2
/c and Jn−l( V

�ω ) = δln.
The Dirac particles incident to the driven potential will
be scattered inelastically into Floquet sidebands (chan-
nels) with energy spacing �ω according to En = E + n�ω.
The mode of En < 0 is an evanescent mode and the corre-
sponding sideband is called evanescent sideband because
such a mode with imaginary p′n cannot propagate [15].
Using the continuity of Φ at the interfaces x = −a/2 and

Fig. 1: (Color online) (a) Schematic diagram of the model for
Dirac particle transmission through a single potential barrier
under the applied oscillation field V cos(ωt). (b) The mecha-
nism diagram of Fano resonance from the interference between
the continuum band and the discrete level.

a/2, the scattering matrix for the single potential barrier
is given by [15](

bI

aIII

)
= S

(
aI

bIII

)
=

(
r t′

t r′

) (
aI

bIII

)
, (5)

where r and t are matrices whose elements denote the
probability amplitudes of reflection and transmission, re-
spectively, for modes in which the Dirac particle is inci-
dent from the left (region I). For instance, the matrix
element tnl is the probability amplitude of transmission
for a Dirac particle incident from channel l on the region
I to appear at a channel n on the region III. r′ and
t′ describe the scattering process incident from the right
(region III). The total Dirac-particle transmission prob-
abilities for incident E are given by

T =
+∞∑
n=0

p′n/
(
En + mc2

)
p′0/ (E0 + mc2)

|tn0|2 . (6)

For the static quantum barrier in the absence of oscil-
lating field the continuum region E > mc2 corresponds
to continuum states of free Dirac particles. The quantized
spectrum of the bound state and the extended state in the
energy region −mc2 < E < mc2 is given by the transcen-
dental equations based on the continuity condition

tan
pa

2
= −sgn(E)

√
(mc2 − E)(V0 − E − mc2)
(mc2 + E)(V0 − E + mc2)

, (7)

tan
pa

2
= sgn(E)

√
(mc2 + E)(V0 − E + mc2)
(mc2 − E)(V0 − E − mc2)

, (8)

where p =
√

(V0 − E)2 − m2c4/c. The discrete energy
spectrum depends not only on V0, a and mc2 but also
on the sign of the energy E. It is corresponding to the
bound state for E > 0 and the extended state for E < 0.
The positive-energy solutions are the same as the results
of refs. [16,17] and the corresponding wave function is a
bound state, while in general the negative-energy solutions
have been ignored before because their wave functions are
extended states.
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Fig. 2: (Color online) The systems parameters V0 = 10, a = 2,
and mc2 = 1. (a) The transmission coefficient T for low fre-
quency �ω = 0.5 < mc2 as a function of incident energy.
(b) and (c): the linewidth Γ and asymmetry parameter q as
a function of weaker oscillation amplitude V for different fre-
quency, respectively. All kinds of blank shape come from the

formula of the Fano line; color solid lines Γ ∝ V 2, q ∝ −V
√

5.

Anomalous Fano resonance. – We study numeri-
cally the scattering of a single incident wave through an
oscillating quantum barrier and calculate the transmission
coefficients. The width and strength of a static poten-
tial barrier are set as a = 2 and V0 = 10, respectively.
The minimum number of sidebands needed in the sum of
eq. (6) depends on the oscillation amplitude of the poten-
tial. According to ref. [18], we should take N > V/�ω.

In the absence of oscillating field, the transmission coef-
ficient in eq. (6) changes to T = 4η2

[4η2+(1−η2)2 sin2(pa)] [19],

where η =
√

(V0−E+mc2)(E+mc2)
(V0−E−mc2)(E−mc2) , and the transmis-

sion has smooth resonant peaks described as Klein tun-
nelling which is enhanced for the barrier if pa = Nπ,
corresponding to the energy of Klein peaks EN = V0 −√

m2c4 +
(

Nπ
a

)2
. The Klein tunneling due to conserva-

tion of particle-antiparticle in the Dirac system is shown
as the solid black line of fig. 2(a).

In the presence of oscillating field, the bound state of
the potential barrier may provide the discrete channel of
scattering required by the Fano resonance as shown in
fig. 1(b). Once the energy difference between the incident
Dirac particles and the bound states in the barrier is equal
to the energy of one or more photons (E = Eb + n�ω),
transmission resonance occurs. As shown in fig. 2(a), the
Fano resonance appears and the resonance energy satis-
fies the relation E = Eb + �ω for low amplitude of the
oscillating field, for instance for V = 0.1 the resonance
energy is E = 1.306, corresponding to bound states with
positive energy Eb = 0.806268 for the static quantum bar-
rier from eq. (7) and eq. (8). With the increase of the
oscillation amplitude, a weaker two-photon–assisted Fano
resonance appears in the energy region. These results are

Fig. 3: (Color online) The systems parameters �ω = 2.5,
V0 = 10, a = 2, and mc2 = 1. (a) The transmission coefficient
T for high frequency �ω > mc2 as a function of incident energy.
(b) and (c): the linewidth Γ and asymmetry parameter q as
a function of weak oscillation amplitude V , respectively. All
kinds of blank shape come from the formula of the Fano line;

the magenta solid line Γ ∝ V 2, q ∝ −V
√

5 for normal Fano

resonance; the violet solid line Γ ∝ V
√

3, q ≈ const and the
green line Γ ∝ V 2, q ≈ const for anomalous Fano resonance.

similar to the ones of the nonrelativistic electron [20], the
relativistic massless Dirac particles [12] and the massive
Dirac particles [14].

With the increase of the oscillation amplitude, the total
transmission including Klein tunneling and Fano reso-
nance is suppressed, and the width of the Fano resonance
increases as V increases. Using the formula of the Fano
line1, the linewidth Γ and the asymmetry parameter q of
the Fano line as a function of the oscillation amplitude V
can be obtained, and plotted in fig. 2(b) and fig. 2(c), re-
spectively. It is found that the linewidth is approximately
proportional to the square of the oscillation strength, i.e.,
V 2, which is the same as the result of ref. [2], and the
asymmetry parameter is approximately proportional to
−V

√
5 for weak oscillation.

In the above study the frequency is low and �ω < mc2,
in the following we turn to discuss the phenomena for
the high frequency, �ω > mc2. The transmission coeffi-
cient as a function of incident energy for high frequency
is plotted in fig. 3(a). The results show that three Fano
resonances appear, one of them is corresponding to the
bound state with the bound energy Eb, i.e., the incident
energy E = Eb + �ω; the other two new ones appear at
E = 1.50329 and 2.05535 which happen to correspond to
one-photon processes from the negative-energy solutions
(Ed1 = −0.444681 and Ed2 = −0.996712) of eq. (7) and

1 pmax
1+Δ+q2

h

(ε+q)2

ε2+1
+ Δ

i

with ε = 2 (E − E0) /Γ and Δ =

(1+q2)pmin
pmax−pmin

. E0, Γ and q are the resonant energy, linewidth and

asymmetry parameter, respectively. pmin and pmax are the mini-
mum and maximum of the Fano resonance peak.
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Fig. 4: (Color online) For V0 = 10 and mc2 = 1. (a) The transmission coefficient T as a function of the width, a, of the barrier
for given incident energy Ein = 1.1, and V = 0.3, �ω1 = 0.5, �ω2 = 1.5, �ω3 = 2.0. (b) The energy spectrum vs. the width,
a, of the barrier. The red line shows the solutions of bound states, the green line and the blue line stand for the solutions of
extended states. Panels (c)–(e) are the wave functions of the bound state and extended states for a = 2. The “up” dotted line
shows the up component, the “down” dashed line indicates the down component and the “sum” solid line stands for the sum
of the up and down components.

eq. (8), that is to say, E = Edj + �ω (j = 1, 2). The two
new ones belong to supercritical resonances because the in-
cident particle energy with positive-energy states matches
a negative-energy state’s frequency.

For the high-frequency case, the linewidth Γ and the
asymmetry parameter q as a function of the weaker oscil-
lation amplitude V are plotted in fig. 3(b) and fig. 3(c).
We can find that the linewidths increase with power laws
of V , approximately proportionally to V 2 for Eb and Ed2,
and to V

√
3 for Ed1. We can also see that the coefficients of

power laws for Edj are much larger and the linewidths for
the two extended states grow rapidly. More intriguingly,
the asymmetry parameter is approximately proportional
to −V

√
5 for the bound state, while the asymmetry param-

eters for the two extended states are approximately equal
to constants for different oscillation amplitudes. This can
be used to distinguish between the Fano resonance of the
bound state and that of extended states in experiment.

It is well known that the appearance of Fano resonance
is dependent on the energy spectrum of the static poten-
tial barrier. The incident Dirac particles can emit photons
and drop to discrete levels embedded in the potential
barrier, then jump to the incident channel by absorbing
photons. In fig. 4(a) and fig. 4(b) we plot the trans-
mission coefficient for given incident energy Ein = 1.1
and the energy spectrum as a function of the potential
width a, respectively. It is seen that for the low frequency,
�ω1 = 0.5, normal Fano resonances appear at the positons
with Ein = Eb+�ω1, and the weak two-photon process oc-
curs at Ein = Eb +2�ω1, which are the same as the result
of ref. [14]. The bound wave function of the discrete energy

level Eb is shown in fig. 4(c). For the high-frequency case,
�ω2 = 1.5 > mc2(= 1), new Fano resonances appear at
the positions with Ein = Ed1 + �ω2 (see green line of
fig. 4(a)), and the wave function corresponding to Ed1 is
an extended wave function as shown in fig. 4(d). Another
kind of new Fano resonance occurs at the position with
Ein = Ed2 +�ω3 at �ω3 = 2.0 > mc2, denoted by the blue
line of fig. 4(a), and the corresponding wave function of
the discrete energy level Ed2 is shown in fig. 4(e).

The new-kind Fano resonance (here denoted as anoma-
lous Fano resonance) for the high-frequency cases results
from the interference between a continuum band and em-
bedded discrete levels with extended wave functions. We
know that the extended solutions for the Dirac equation
always exist [21], but the discrete levels with extended
wave function have always been abandoned before since
one believes the wave function of the discrete level should
be localized, and so far no effect caused by the extended
states for the Dirac equation has been observed. However,
here we find that the Fano resonances correspond to
such discrete levels. Indeed, the incident Dirac particle
does not emit and absorb real photons for dropping to
the extended states and jumping back to the continuum
respectively, hence the anomalous Fano resonance just
occurs with a virtual process by virtual photons.

Discussions and conclusions. – We have investi-
gated theoretically the property of the massive Dirac
particle transmission over a barrier with an oscillating
field. For the first time we find the anomalous Fano res-
onance by studying the asymmetry parameters of Fano
resonance, which are quite different from those of the
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normal Fano resonance. For the anomalous Fano reso-
nance the asymmetry parameters are approximately equal
to a constant with the increase of the oscillation ampli-
tude, while for the normal Fano resonance the asymme-
try parameters are approximately proportional to −V

√
5.

From the point of view of the physical mechanism the
anomalous Fano resonance arises from the interference be-
tween an extended state and the continuum state, rather
than from the interference between the traditional bound
state and the continuum state.

In general the one-photon–assisted process plays a
major role in the occurrence of the Fano resonance.
For nonrelativistic particle and relativistic Dirac particle
without mass, Fano resonance occurs when Ein = Eb+�ω.
However, for massive relativistic Dirac particle there is a
forbidden band from −mc2 to mc2, therefore the energy
of the incident particle must be not less than mc2. Hence
there should be a threshold for frequency, i.e., �ωc =
mc2 − Eb(dj), for the occurrence of Fano resonance, and
Fano resonance may occur only for �ω > �ωc. The en-
ergy Edj is less than zero, therefore the occurrence of the
anomalous Fano resonance need satisfy �ω > �ωc(> mc2).
Such a high frequency is corresponding to γ-rays for real
electron which is very difficult to be implemented in ex-
periment. However, the gap can be tuned generally in ex-
periment for bilayer graphene [22–24], Fermi cold atoms
in honey comb lattice [25] and photonic simulation in sub-
wavelength materials [26]. For graphene the energy gap
is corresponding to infrared light while for cold atom and
photonic simulation they are corresponding to microwave,
therefore the condition may be easier to be satisfied in
experiment. On the other hand, although our model is a
simple rectangular potential barrier, the negative-energy
solutions of extended states do not depend on the choice of
potential, so it causes no loss of generality. Thus the novel
physical phenomena of anomalous Fano resonance may
be observed experimentally in graphene, ultra-cold atoms,
subwavelength materials, or other massive Dirac systems.
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