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We study the tunneling dynamics of bosons with periodically modulated interaction held in a triple-
well potential. In high-frequency approximation, we derive a set of reduced coupled equations and 
the corresponding Floquet solutions are obtained. Based on the analytical results and their numerical 
correspondence, the directed selective-tunneling effect of a single atom is demonstrated when all bosons 
are prepared in middle well initially. A scheme for separating a single atom from N bosons is presented, 
in which the atom can be trapped in right or left well by adjusting the modulation strength.
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1. Introduction

The coherent manipulation for a quantum system subjected to 
an external field has been an attractive subject in recent years in 
both theoretical and experimental physics [1,2]. Coherent control 
of quantum tunneling for a periodically driven system is one of 
the most important technologies due to its many applications [3], 
such as quantum device [4], artificial magnetic fields [5], and quan-
tum information processing [6,7], etc. One of the recent topics in 
the quantum control of tunneling dynamics is the effect known 
as coherent destruction of tunneling (CDT) [8], namely, when the 
strength and frequency of driving force are chosen appropriately, 
a particle initially located in one of two wells never tunnels to the 
other. The CDT is based on the fast modulation of level unbalance 
and the corresponding effect has been verified experimentally [9,
10]. Then, a selective CDT effect was found numerically in a driven 
quantum-dot array [11], in which the quantum tunneling between 
dots can be suppressed selectively. Such an effect has been demon-
strated analytically in a driven tight-binding chain [12]. Further, 
the selective CDT effect has been introduced to realize a directed-
motion scheme of atoms held in a driven one-dimensional bipar-
tite lattice [13,14].
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It is well-known that the sign and strength of the s-wave scat-
tering length of interacting cold atoms can be adjusted by using 
magnetic or optical Feshbach resonances [15]. This technique has 
been used extensively [16] and many interesting phenomena were 
demonstrated in the framework of mean-field and Bose–Hubbard 
models. Such as stable Bloch oscillations [17], self-confinement 
of two- and three-dimensional Bose–Einstein condensates (BECs) 
without an external trap [18] and the generation of nonground-
state BECs [19]. In a two-mode Bose–Hubbard model, a butterfly 
pattern of Floquet spectrum is displayed based on the double-
kicked modulation of atomic interaction [20]. And in Ref. [21], 
Gong, Molina and Hänggi have proposed a many-body CDT effect 
by the periodic modulations of atomic interaction, in which only 
an arbitrarily, a priori prescribed atoms are allowed to participate 
in the tunneling process between double wells. An optical realiza-
tion of the corresponding phenomenon was presented based on 
light transport in engineered waveguide arrays [22]. Further, the 
double-well model has been extended to an optical lattice sys-
tem for the ultracold atoms with periodically modulated interac-
tion [23]. An effective Hubbard-like model was presented, which 
includes a nonlinear hopping that depends on the difference of oc-
cupations at neighboring sites. The rich physics introduced by this 
hopping were discussed, such as pair superfluid phases, exactly 
defect-free Mott-insulator states, pure holon, doublon superfluids 
and quantum Peierls phase, etc.
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Recently, the tunneling dynamics of cold atoms held in a triple-
well potential have attracted substantial interest and were in-
vestigated extensively. Such as stimulated Raman adiabatic trans-
port [24], the transistor-like effect [25] and the effect of dipole–
dipole interaction [26,27], etc. In this paper, we further consider 
the tunneling dynamics of bosons held in a triple-well potential 
and we are interested in the quantum manipulation of tunneling 
dynamics based on the periodical modulation of atomic interac-
tion. In our work, we choose bias potential ε0 = 0.5ω and time-
independent interaction U0 = 0.5ω/(N − 1) with ω, N being the 
modulating frequency and number of bosons, respectively. Under 
high-frequency approximation, we obtain a set of truncated cou-
pled equations that relate to the subspace spanned by Fock states 
{|0, N −1, 1〉, |0, N, 0〉, |1, N −1, 0〉}. When initial state is located in 
this subspace, we obtain a set of analytical Floquet solutions and 
the corresponding superposition states. Based on these analytical 
results, the directed selective-tunneling effect of a single boson is 
demonstrated, in which the good correspondence is exhibited be-
tween analytical and numerical results. It is shown that a single 
atom can be separated from N bosons and trapped in right or left 
well by adjusting the modulation strength. The corresponding re-
sult presented in our work may be useful in the design of atomic 
devices [4,6,25,28].

2. Floquet solutions under high-frequency approximation

We consider a system described by the three-mode Bose–
Hubbard Hamiltonian, which is realized physically by bosons 
trapped in a triple-well potential. We consider the interaction 
strength is modulated periodically in time and the system is de-
scribed by corresponding Hamiltonian as [21–23]

Ĥ(t) = −Ω
∑
〈k,l〉

(
ĉ†

kĉl + ĉ†
l ĉk

) + U (t)

2

3∑
k=1

ĉ†
kĉ†

kĉkĉk

+ ε0
(
ĉ†

1ĉ1 − ĉ†
3ĉ3

)
, (1)

where ĉ†
k (ĉk) creates (annihilates) an atom in the well k. Ω > 0 is 

the couplings between nearest-neighbor wells and ε0 is the poten-
tial bias along the triple-well axis. The on-site interaction between 
atoms is characterized by U (t) = U0 + U1 cos(ωt), which can be 
controlled by using suitable Feshbach resonances [15].

In our paper, we have set h̄ = 1 and U0, U1, ε0, ω and Ω

are in units of reference frequency ω0 on the order of 102 s−1

[29], and the time t has been normalized in units of ω−1
0 . To 

study tunneling dynamics of bosons held in triple-well system, 
we introduce the Fock basis |n1, n2, N − n1 − n2〉 with n1, n2 and 
N − n1 − n2 being the number of atoms in the left, middle and 
right wells, respectively. In this paper, we consider the total num-
ber of atoms N is a constant. On the basis of Fock states, the 
corresponding quantum state Ψ (t) can be expanded as |Ψ (t)〉 =∑N

n1=0
∑N−n1

n2=0 an1,n2(t)|n1, n2, N − n1 − n2〉, where an1,n2(t) denote 
the time-dependent probability amplitudes that obey the normal-
ization condition 

∑N
n1=0

∑N−n1
n2=0 |an1,n2(t)|2 = 1. Inserting Eq. (1)

and the expanded expression of |Ψ (t)〉 into Schrödinger equation 
i ∂Ψ (t)

∂t = H(t)Ψ (t) results in a set of coupled equations of an1,n2 (t)
with equation number ζ = (N + 1)(N + 2)/2.

It is very difficult to obtain the exact solutions of all coupled 
equations because of the periodically varying coefficients. However, 
the coherent manipulation of tunneling dynamics can be investi-
gated analytically in high-frequency approximation with ω � Ω . 
We introduce a set of slowly varying functions bn1,n2(t) through 
the transformation [30] an1,n2(t) = bn1,n2(t) exp{−i 

∫ t
0 [0.5U (t)(n1

(n1 −1) +n2(n2 −1) +(N −n1 −n2)(N −n1 −n2 −1)) +ε0(2n1 +n2 −
N)]dt} with |an1,n2 (t)|2 = |bn1,n2(t)|2, which leads to that the high-
frequency oscillating modulation will be contained in the phase 
factors. Resembling the fractional photon resonance effect [31], we 
set the parameters ε0 = 0.5ω, U0 = 0.5ω/(N − 1), and a set of 
coupled equations of bn1,n2(t) can be obtained as

iḃ0,N−1(t) = −√
NΩb0,N(t)e−i[ωt+U1(N−1) sin(ωt)/ω]

− √
N − 1Ωb1,N−2(t)e−i[ ωt

2(N−1)
−U1(N−2) sin(ωt)/ω]

− √
2(N − 1)Ωb0,N−2(t)ei[ωt− ωt

N−1 +U1(N−3) sin(ωt)/ω],
iḃ0,N(t) = −√

NΩb0,N−1(t)ei[ωt+U1(N−1) sin(ωt)/ω]

− √
NΩb1,N−1(t)ei[U1(N−1) sin(ωt)/ω],

iḃ1,N−1(t) = −√
NΩb0,N(t)e−i[U1(N−1) sin(ωt)/ω]

− √
N − 1Ωb1,N−2(t)ei[ωt− ωt

2(N−1)
+U1(N−2) sin(ωt)/ω]

− √
2(N − 1)Ωb2,N−2(t)e−i[ ωt

N−1 −U1(N−3) sin(ωt)/ω],
(2)

where only three coupled equations are presented, in which 
the probability-amplitude functions b0,N−1(t), b0,N (t), b1,N−1(t), 
b0,N−2(t), b1,N−2(t) and b2,N−2(t) correspond to states |0, N −1, 1〉, 
|0, N, 0〉, |1, N − 1, 0〉, |0, N − 2, 2〉, |1, N − 2, 1〉 and |2, N − 2, 0〉, 
respectively. By using Fourier expansion exp[±i(nωt +x sin(ωt))] =
Σ∞

n′=−∞Jn′(x) exp[±i(n + n′)ωt] with n = 0, 1 and under the high-
frequency approximation, we can neglect these rapidly oscillating 
terms of the Fourier expansion with n ± n′ �= 0. Simultaneity, these 
functions oscillating rapidly such as e−i ωt

N−1 and e−i ωt
2(N−1) in differ-

ential equations (2) can be replaced by their average value of zero 
in the short time interval 2π/ω when ω � 2(N − 1) [32]. Thus, 
in high-frequency approximation, the set of coupled equations of 
bn1,n2 (t) can be effectively truncated as

iḃ0,N−1(t) = − J1b0,N(t),

iḃ0,N(t) = − J1b0,N−1(t) − J2b1,N−1(t),

iḃ1,N−1(t) = − J2b0,N(t). (3)

In Eq. (3), the effective couplings are given as J1 = √
NΩJ−1 ×

[(N − 1)U1/ω] and J2 = √
NΩJ0[(N − 1)U1/ω] with Jn(x) be-

ing the n-order Bessel function of x. Here the effective couplings 
depend on the modulating parameters, number of atom. And 
the zeroth- and first-order Bessel functions emerge in the effec-
tive couplings resulting from appropriate bias ε0 and interaction 
U0. The different order Bessel function will result in asymmet-
ric tunneling dynamics in the subspace spanned by Fock states 
{|0, N − 1, 1〉, |0, N, 0〉, |1, N − 1, 0〉} when initial state is prepared 
in this subspace.

Setting bn1,n2 = Bn1,n2 e−irt with Bn1,n2 and r being constants 
and inserting such a form of bn1,n2 into Eq. (3), the constant r

can be obtained as r1 = 0, r2,3 = ±
√

J 2
1 + J 2

2 . It is well-known 
that a quantum state of periodically driven system can be de-
scribed by Ψ (t) = φ(t)e−iEt based on the Floquet theorem [33], 
in which the Floquet state φ(t + T ) = φ(t) with T and E be-
ing the period of Eq. (1) and Floquet quasienergies, respectively. 
Based on the transformation relation between functions an1,n2 (t)
and bn1,n2 (t) and the expression bn1,n2 = Bn1,n2 e−irt , the Floquet 

energies can be constructed as E1 = k, E2,3 = ±
√

J 2
1 + J 2

2 + k with 
0 ≤ k = (N/4 − m)ω < ω and m = 0, 1, 2, . . . . The constant Bn1,n2

can be obtained easily from Eq. (3) and the corresponding Floquet 
states φ(t) are constructed as

φ1(t) = 1√
J 2

1 + J 2
2

× [− J2e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt |0, N − 1,1〉
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+ J1e−i
(N−1)(N−2)U1

2ω sin(ωt)−imωt |1, N − 1,0〉]

φ2,3(t) = 1√
2( J 2

1 + J 2
2)

×
[

J1e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt |0, N − 1,1〉

∓
√

J 2
1 + J 2

2e−i
N(N−1)U1

2ω sin(ωt)−imωt |0, N,0〉

+ J2e−i
(N−1)(N−2)U1

2ω sin(ωt)−imωt |1, N − 1,0〉
]
. (4)

Based on the analytical Floquet solutions obtained above, the 
superposition state of modulating system can be constructed [32]
as

Ψ (t) = Σ3
j=1Λ jφ j(t)e−iE jt, (5)

where the superposition coefficient Λ j depends on the initial con-
ditions. It can be seen that the superposition state in Eq. (5)
implies quantum interference effect among Floquet states. The cor-
responding interference may cause the coherent enhancement or 
suppression of tunneling, whose degree depends on the value of 
the effective couplings. Firstly, we consider all atom are prepared 
in middle well initially and the superposition coefficient can be ob-

tained as Λ1 = 0, Λ2,3 = ∓
√

2
2 . Correspondingly, the superposition 

state is given as

Ψ (t) =
i J1 sin(

√
J 2

1 + J 2
2t)

√
J 2

1 + J 2
2

× e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt−ikt |0, N − 1,1〉
+ cos

(√
J 2

1 + J 2
2t

)
e−i

N(N−1)U1
2ω sin(ωt)−imωt−ikt |0, N,0〉

+
i J2 sin(

√
J 2

1 + J 2
2t)

√
J 2

1 + J 2
2

× e−i
(N−1)(N−2)U1

2ω sin(ωt)−imωt−ikt |1, N − 1,0〉. (6)

When the initial state is |0, 4, 1〉, from Eq. (5) the superposi-

tion coefficient can be derived as Λ1 = − J2/

√
J 2

1 + J 2
2, Λ2 = Λ3 =

J1/

√
2( J 2

1 + J 2
2) and the corresponding superposition state is

Ψ (t) =
J 2

2 + J 2
1 cos(

√
J 2

1 + J 2
2t)

J 2
1 + J 2

2

× e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt−ikt |0, N − 1,1〉

+
i J1 sin(

√
J 2

1 + J 2
2t)

√
J 2

1 + J 2
2

e−i
N(N−1)U1

2ω sin(ωt)−imωt−ikt |0, N,0〉

+
J1 J2[cos(

√
J 2

1 + J 2
2t) − 1]

J 2
1 + J 2

2

× e−i
(N−1)(N−2)U1

2ω sin(ωt)−imωt−ikt |1, N − 1,0〉. (7)

If the initial state is changed as |1, 4, 0〉, we can get the super-

position coefficient Λ1 = J1/

√
J 2

1 + J 2
2, Λ2 = Λ3 = J2/

√
2( J 2

1 + J 2
2)

and the corresponding superposition state
Ψ (t) =
J1 J2[cos(

√
J 2

1 + J 2
2t) − 1]

J 2
1 + J 2

2

× e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt−ikt |0, N − 1,1〉

+
i J2 sin(

√
J 2

1 + J 2
2t)

√
J 2

1 + J 2
2

e−i
N(N−1)U1

2ω sin(ωt)−imωt−ikt |0, N,0〉

+
J 2

1 + J 2
2 cos(

√
J 2

1 + J 2
2t)

J 2
1 + J 2

2

× e−i
(N−1)(N−2)U1

2ω sin(ωt)−imωt−ikt |1, N − 1,0〉. (8)

In the following, we are going to focus on coherent control of 
tunneling dynamics of bosons based on above analytical superpo-
sition state by adjusting the modulation strength.

3. Directed selective-tunneling effect in triple-well system

By adjusting the modulation strength U1, there exists sev-
eral roots of Bessel function, which leads to the effective cou-
pling Jn = Ω

√
NJn−2[(N − 1)U1/ω] = 0 with n = 1, 2. Firstly, 

we consider all atom are prepared in middle well initially and 
the modulating interaction U1 = 2.405ω/(N − 1), which leads 
to the effective coupling J2 = 0. Correspondingly, Eq. (6) is 
reduced as |Ψ (t)〉 = cos( J1t)e−i

N(N−1)U1
2ω sin(ωt)−imωt−ikt |0, N, 0〉 +

i sin( J1t)e−i
(N−1)(N−2)U1

2ω sin(ωt)−i(m−1)ωt−ikt |0, N − 1, 1〉. Clearly, the 
tunneling only occur between states |0, N, 0〉 and |0, N − 1, 1〉. The 
result means that the directed selective-tunneling effect occurs, 
in which a single atom perform Rabi oscillation between mid-
dle and right wells and the tunneling period can be obtained as 
T = | π

Ω
√

NJ−1(x0)
| with x0 satisfying J0(x0) = 0.

As an example, we consider the tunneling dynamics for N = 5
(m = 1, k = ω/4). Fixing ω = 80 and Ω = 1, U0 = 10, ε0 = 40, 
the modulation strength U1 = 2.405ω/4 leads to effective coupling 
J2 = 0 and the corresponding time evolutions of atomic proba-
bilities are exhibited as in Fig. 1(a) with Pn1,n2 (t) = |an1,n2 (t)|2 =
|bn1,n2(t)|2. It can be seen that all probabilities Pn1,n2 (t) � 0 ex-
cept for the probabilities of states |0, 5, 0〉 and |0, 4, 1〉. The result 
implies that the directed selective-tunneling occurs, in which only 
one of five bosons is allowed to tunnel from the initial well to 
right one. Here the pathway between wells 1 and 2 is shut off 
and only a single boson performs Rabi oscillation along this path-
way between wells 2 and 3. The directed tunneling effect implies 
that left and right symmetry is broken, which results from bias 
potential and atomic interaction. The maximal probability of state 
|0, 4, 1〉 Pmax � 1 at t′ = T /2 � 1.35, which means that a single 
atom has completely tunnels into right well at this time. The an-
alytical results (circles) are confirmed numerically from Eq. (1), as 
shown by the solid lines, and good agreement is found between 
both.

Now we consider the initial state is changed as |0, N − 1,1〉
and U1 = 3.832ω/(N − 1) that leads to the effective coupling J1 =
0. Correspondingly, Eq. (7) is reduced as Ψ (t) =
e−i

(N−1)(N−2)U1
2ω sin(ωt)−i(m−1)ωt−ikt |0, N −1, 1〉. The result implies that 

the quantum tunneling of all bosons has been suppressed com-
pletely and the CDT effect occurs as in Fig. 1(b) for N = 5, in 
which the analytical results (circles) is good agreeable with nu-
merical one.

Quantum manipulation is an interesting and important research 
area and possesses potential applications in quantum devices and 
information technologies [32,34]. Based on above analytical results, 
we propose a manipulation scheme for separating a single atom 
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Fig. 1. The time evolutions of the atomic probabilities for U1 = 2.405ω/4 in (a) and U1 = 3.832ω/4 in (b) with N = 5. In (a) and (b), the initial states are |0, N, 0〉
and |0, N − 1, 1〉, respectively. The other parameters are set as Ω = 1, ω = 80, ε0 = 40, U0 = 10. Circles indicate the analytical results and solid lines the numerical 
correspondences. Here and in other figures all variables are dimensionless.

Fig. 2. (a) shows the coherent manipulation for separating a single atom from N bosons numerically with N = 5. The initial state is |0, N, 0〉 and the modulation strength are 
chosen as U1 = 2.405ω/4 (0 ≤ t < 1.35) and U1 = 3.832ω/4 (1.35 ≤ t ≤ 3). The other parameters are the same as in Fig. 1(a). The (b) exhibits the schematic diagrams of 
directed selective-tunneling of a single atom |0, 5, 0〉 → |0, 4, 1〉.
from N bosons through controlling the modulation strength. Ini-
tially, we consider that all bosons are prepared in middle well with 
P0,N (t0) = 1 and the parameters ε0 = 0.5ω, U0 = 0.5ω/(N −1) and 
U1 = 2.405ω/(N − 1). The set of parameters leads to the effective 
coupling J2 = 0 and the selective-tunneling effect of a single atom 
occurs between middle and right wells. At t′ = T /2, one atom of N
bosons tunnels completely into right well and the quantum state 
can be described by Fock state |0, N − 1, 1〉. Just now, the mod-
ulating interaction is changed as U1 = 3.832ω/(N − 1) that leads 
to J1 = 0. Subsequently, the CDT effect occurs based on Eq. (7), in 
which the tunneling of all bosons among three-well system will 
be suppressed completely and one atom will be trapped in right 
well at all times. Thus, we successfully separate single atom from 
N bosons by adjusting the modulation interaction. The coherent 
manipulation scheme for separating a single atom from N bosons 
is demonstrated numerically as in Fig. 2(a) for N = 5 and the cor-
responding schematic diagram is displayed by Fig. 2(b).

Further, fixing the parameters relations ε0 = 0.5ω, U0 = 0.5ω/

(N − 1) and U1 = 2.405ω/(N − 1), we calculate numerically all 
probabilities Pn1,n2(t) from Eq. (1) for different frequency ω and 
atom number N in the time interval t ∈ [0, 200 × 2π

ω ]. We take 
the maximal value of probability for the state |0, N − 1, 1〉 and the 
maximal probability Pmax versus the modulating frequency ω is 
exhibited as in Fig. 3, in which the Pmax � 1 means the occur-
rence of directed selective-tunneling between states |0, N, 0〉 and 
|0, N − 1, 1〉. It is shown that the selective-tunneling effect of a 
single boson only occur in high-frequency region where Pmax � 1. 
When N = 2, it can be seen that the directed selective-tunneling 
of a single boson can be realized for ω � 40. But with N increas-
ing, more higher modulating frequency ω is required to realize the 
directed selective-tunneling effect of a single boson.

When all bosons are located in middle well initially and 
the relation J1 = 0 is satisfied, Eq. (6) is reduced as |Ψ (t)〉 =
cos[ J2t] exp[−i N(N−1)U1

2ω sin(ωt) − imωt − ikt]|0, N, 0〉 + i sin[ J2t]×
exp[−i (N−1)(N−2)U1

2ω sin(ωt) − imωt − ikt]|1, N − 1, 0〉. The re-
sult means the tunneling only occur between states |0, N, 0〉
Fig. 3. (Color online.) The maximal probability of the state |0, N − 1, 1〉 in the time 
evolution t ∈ [0, 200 × 2π

ω ] for different frequency ω and atomic number N . The 
initial state is |0, N, 0〉 and other parameters Ω = 1, ε0 = 0.5ω, U0 = 0.5ω/(N − 1)

and U1 = 2.405ω/(N − 1).

and |1, N − 1, 0〉 and the tunneling period of single atom T ′ =
| π
Ω

√
NJ0(x′

0)
| with x′

0 satisfying J−1(x′
0) = 0.

In Fig. 4(a), the time evolutions of atomic probabilities are 
shown for the modulating strength U1 = 3.832ω/4 with N = 5. 
The other parameters are same as that in Fig. 1(a). It can be 
seen that the directed selective-tunneling occurs between states 
|0, 5, 0〉 and |1, 4, 0〉, in which only the pathway between wells 
1 and 2 is switched on and only one of five bosons participates 
in the tunneling process along this tunneling path with tunnel-
ing time t = T ′/2 = 1.744. It is shown that the analytical results 
(circles) are in a good agreement with the numerical ones (solid 
lines) from Eq. (1). Similarly, from the analytical solutions (6) and 
(8), we know that a single atom can be separated from N bosons 
and trapped in left well when we adjust the modulation strength 
to U1 = 2.405ω/(N − 1) at t = T ′/2. In Fig. 4(b), we exhibit the 
corresponding schematic diagram of directed tunneling of a single 
boson.

In our paper, when all bosons are prepared in middle well 
initially, the selective-tunneling effect is demonstrated, in which 
a single atom can be separated from N bosons and trapped in 
right or left well through controlling the modulation strength. It 
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Fig. 4. The time evolutions of the atomic probabilities for U1 = 3.832ω/4 with N = 5. The initial condition and the other parameters are the same as in Fig. 1(a). The (b)
exhibits the schematic diagrams of directed selective-tunneling of a single atom |0, 5, 0〉 → |1, 4, 0〉.
is well-known that the transistorlike effects of bosons held in a 
triple well has been demonstrated, in which the atomic popula-
tion in the middle well controls the tunneling dynamics between 
the left and right wells [25]. In Ref. [27], the scheme of directed 
selective-tunneling has been presented for dipolar bosons held in 
a triple-well and the directed tunneling of 1 or (N − 1) bosons de-
pend on the dipolar interaction and the fast modulation of level 
unbalance. But in our work, we exhibit another a manipulating 
scheme of the selective tunneling based on the periodical modu-
lation of atomic interaction. However, it is a pity that the directed 
tunneling of a prescribed number of bosons can’t be realized in our 
presented triple-well system because we can’t find the appropriate 
ε0 and U0 to realize the photon-assisted resonance tunneling ef-
fect between |0, N, 0〉 and other Fock states except for |0, N − 1, 1〉
and |1, N − 1, 0〉.

4. Summary and discussion

In summary, we have investigated the tunneling dynamics of 
bosons with periodically modulated interaction held in a triple-
well potential. By choosing proper parameters ε0, U0 and under 
high-frequency approximation, we obtain a set of reduced coupled 
equations of probability amplitudes and the selective-tunneling 
effect is demonstrated analytically and numerically. By adjusting 
the modulation strength and frequency, we found that only one 
atom is allowed to tunnel into left or right well and a manipula-
tion scheme is demonstrated for separating a single atom from N
bosons. The coherent control of selective-tunneling effect is inter-
esting for potential atomic devices and the manipulation scheme 
can be realized under the presently accessible experimental con-
ditions [10,15,22,35]. Further, the result obtained in our work can 
help us to understand the tunneling dynamics of bosons trapped 
in an optical lattice [23].
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