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1. Introduction

The experimental realization of artificial gauge fields in neu-
tral atom systems [1–8] has attracted a great deal of attention 
in the ultracold physics community. So far, both abelian and 
non-abelian gauge fields have been realized for quantum gases 
using the two-photon Raman process [1, 9–11]. The realized 
non-abelian gauge field leads to a particular spin–orbit (SO) 
coupling, which can be regarded as an equal-weight combi-
nation of Rashba and Dresselhaus SO coupling [12]. In such 
systems, the strength of the coupling can be optically tuned, 
which is also a useful tool for ultracold fermions [13, 14]. 
These achievements have stimulated theoretical efforts in 
understanding the SO effects and have brought much excite-
ment both theoretically and experimentally in this many-body 
system, such as superstripes and the excitation spectrum [15], 
quantum tricriticality and phase transitions [16], supercurrent 

and dynamical instability [17], Majorana fermions [18], the 
Zitterbewegung effect [19–21], which is characterized by 
high-frequency oscillations (trembling motion) for Dirac 
electrons, and the Fulde–Ferrell–Larkin–Ovchinnikov phase 
of Fermi gases [22–25].

Interesting quantum effects have been found when ultra-
cold atoms are loaded in a double-well trapping potential, 
such as atomic Josephson effects [26–29], and macroscopic 
quantum self-trapping [30–33]. Analysis of the energy level 
of such a system provides an insight into these phenom-
ena [34, 35]. Besides the conventional single species Bose–
Einstein condensates (BECs), the dynamics of two-species 
BECs and spinor BECs in a double-well potential have also 
been studied [36, 37]. More recently, the dynamics of spin–
orbit-coupled (SOC) BECs in a double-well potential has 
been investigated [38–42]. However, to our knowledge, the 
energy levels of the SOC ultracold atoms in the double-well 
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potential have not yet been studied, which may provide an 
insight into their dynamics.

The aim of this paper is to investigate the energy levels of 
an SOC BEC in a double-well trapping potential in the mean-
field framework. In the absence of atomic interaction, the 
energy levels change linearly with the tunneling amplitude, 
the Raman coupling, and the SO coupling strengths. However, 
when the atomic interaction takes place, the energy levels are 
changed completely. Three more energy levels appear even 
for an arbitrarily weak atomic interaction, which change non-
linearly with respect to the Raman coupling strength. The ana-
lytical expressions of the energy levels are obtained, and are 
consistent with the numerical results. Moreover, we find that 
these three new energy levels are multi-degenerate and related 
to the macro-symmetry of the system.

The paper is organized as follows. We introduce in sec-
tion 2 the model describing an SOC BEC in a double-well 
potential. In section 3, we analyze the energy levels of the 
system, and discuss the effects of the tunneling amplitude, 
the Raman coupling, the SO coupling, and the atomic inter-
action on the energy levels. In section 4, we show in detail 
the degeneracy of the energy levels and relate them to the 
macro-symmetry. A brief conclusion is finally given in 
section 5.

2. Model

Spin–orbit coupling in a cold atom system has been success-
fully demonstrated in dilute gases of ultracold 87Rb atoms at 
NIST [3], in which the Raman dressing scheme is based on 
coupling two atomic hyperfine states of 5S1/2, ∣F = 1, mF = 0〉 
and ∣F = 1, mF = − 1〉, labeled as spin-up ∣↑〉 and spin-down 
∣↓〉, respectively. The second-quantized Hamiltonian of the 
Raman dressed BEC confined by a double-well potential V(x) 
in terms of the creation and annihilation field operators ̂Ψ x( ) 

and ̂Ψ †
x( ) is

 
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

̂ ̂̂ ̂̂ ̂ ̂∫ Ψ Ψ= ℏ + + +†
H x x

k

m
V r H H xd ( )

2
( ) ( )x

2 2

soc int (1)

with ̂ ̂ ̂Ψ Ψ Ψ= ↑ ↓( ),
T
 being the normalized wave function in 

the dressed-state representation. ̂kx is the atomic wave vector 
operator, and m is the atom mass. The SO coupling term is 
written as

 ̂̂ α σ Ω σ δ σ= + +H k2
2 2

,x z x zsoc (2)

where Ω is the Raman coupling strength, δ is the detuning of 
the Raman drive from the level splitting, α = Er/kL is the SO 
coupling strength with = ℏE k m/ 2r

2
L
2  being the single-photon 

recoil energy and kL is the wave number of the Raman laser, 
and σx(z) is the Pauli matrix. The atom–atom collision interac-
tions are described by

 
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟̂ ̂̂ ∑ ∑Ψ Ψ= ∣ ∣ ∣ ∣

σ
σ σ

σ
σ σ
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↑

=↑ ↓
↓H u udiag , ,int

,

2

,

2 (3)

where = ℏ
σσ

σσ
′

′u
a

ml

2 2

2
 with σ, σ′  =  ↑, ↓ as the interaction 

strength, σσ′a  the s-wave scattering length between pseudospin 

σ and σ′, and l the oscillator length associated to a harmonic 
vertical confinement. For 87Rb atoms, the differences between 
the spin-dependent nonlinear coefficients are very small and 
contribute only small modifications to the collective behav-
ior. For the parameters used in the present paper, we have 
u↑↓ = u↓↓ = u↑↑ [43].

Now let us consider such an SOC BEC in a spin independ-
ent symmetric double-well potential, and the system is sche-
matically shown in figure 1. Such a double-well potential can 
be experimentally realized following the scheme in [32] with 
the form V(x) = c(x2 − d2)2, where the parameters c and d are 
both tunable. Under the two-mode approximation, the field 
operator can be written as

 ̂ ̂̂Ψ ψ ψ= +σ σ σ σ σx a x a x( ) ( ) ( ) ,l l r r (4)

where ψjσ(x) is the ground-state wave function of the j 
well (j  =  l, r) with pseudo-spin up or down (σ  =  ↑, ↓) and 
the operator ̂ ̂ σ σ

†( )a aj j  is the annihilation (creation) operator 
for spin σ in the j well. The functions ψjσ(x) satisfy the fol-
lowing orthonormalization conditions: ∫dx∣ψjσ(x)∣2  =  1 and 

∫ ψ ψ* =σ σx x xd ( ) ( ) 0l r .
By substituting equation (4) in equation (1), one can rewrite 

the total Hamiltonian as
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⎜⎜

⎞

⎠
⎟⎟̂ ̂ ̂ ̂

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

̂ ∑ ∑

∑ ∑ ∑

Ω

δ

= + +

+ − +

σσ
σσ σ σ

σσ

σσ
σ σ σ σ

′
′

†
′ ↑

†
↓

↑
†

↑ ↓
†

↓
′

′ † †
′ ′( )

H J a a a a

a a a a
g

a a a a

2
h. c.

2 2

l r

j
j j

j
j j j j

j
j j j j

(5)

with ∫ ψ ψ= ∣ ∣ ∣ ∣σσ σσ σ σ′ ′ ′g u N xd j j
2 2. Here ∫ ψ Ω ψ=↑↓ ↑ ↓J x x xd * ( )

2
( )l r   

is the interwell spin-flip tunneling amplitude, i.e. the 
SO coupling, induced by the Raman coupling, and 

⎡
⎣⎢

⎤
⎦⎥∫ ψ δ ψ= * ℏ ± ± +σσ σ σJ x x

m
k k k V x xd ( )

2
( 2 )

2
( ) ( )l x x r

2
2

L  is 

Figure 1. A schematic representation of an SOC BEC in a double-
well trap.
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the Josephson tunneling amplitude between the left and right 
wells with the positive and negative signs corresponding to 
spin-up and spin-down respectively.

In the Heisenberg picture, one can easily obtain the equa-

tions of motion from ⎡⎣ ⎤⎦̂ ̂ ̂=σ σ
t
a a Hi

d

d
,j j  with the Hamiltonian 

(5). In the mean-field approximation, the operator âjσ can 
be replaced by its expectation value ̂⟨ ⟩σaj . For simplicity, 
we denote this c number with ajσ. The SOC system is then 
described by the following equations

 

Ω δ= + + + −

+ ∣ ∣ + ∣ ∣

σ σσ σ σσ σ σ σ

σσ σ σ σσ σ σ

′ ′ ′ ′ ′

′ ′

t
a J a J a a a

g a a g a a

i
d

d 2
( 1)

2
.

j j j j
p

j

j j j j
2 2

(6)
Here j ≠ j′, and σ ≠ σ′, and p = 0, 1 for σ = ↑, ↓ respectively. 
The number of particles with spin σ is given by Nlσ + Nrσ = ∣al

σ∣2 + ∣arσ∣2 = Nσ, and the total number of particles N = N↑ + N↓ 
is conserved.

Since the parameters in the equations  of motion (6) are 
all experimentally tunable [1–3], we take, for simplicity, 
J↑↑ = J↓↓ = J and = =σσ σσ′g g g. The SO coupling strength is 
linearly dependent on the Raman coupling [38], i.e. J↑↓ = βΩ. 
Since the Zeeman field δ is independently tunable and should 
be small, in the following discussions, we take δ = 0.

3. Energy levels of the SOC BEC

The stationary states of the system can be obtained from the 
following equations

 
μ βΩ Ω= + +

+ ∣ ∣ + ∣ ∣

σ σ σ σ

σσ σ σ σσ σ σ

′ ′ ′ ′

′ ′

a Ja a a

g a a g a a
2

j j j j

j j j j
2 2 (7)

with the probability conservation condition ∑j,σ∣ajσ∣2  =  1, 
where μ is the chemical potential, j ≠ j′, and σ ≠ σ′.

When the atomic interaction vanishes, our model reduces 
to the linear case and the four energy levels can be obtained 
directly as

 βΩ Ω= − −E J
2

,1
0 (8)

 βΩ Ω= − − +E J
2

,2
0 (9)

 βΩ Ω= − + −E J
2

,3
0 (10)

 βΩ Ω= + +E J
2

.4
0 (11)

These four energy levels are linearly related to the tunneling 
amplitude Jσσ, the Raman coupling Ω and the SO coupling βΩ.

When the atomic interaction is considered, new station-
ary states emerge for the equation  (7). One can intuitively 
understand that an interaction not only modifies the station-
ary states of the linear case but can stabilize other states 
as well and thus create additional stationary states. In the 
following, we discuss the energy levels in three cases: the 

Figure 2. The energy levels versus the Raman coupling strength Ω, where g = 0.5. (a)–(b) for the strong SO coupling strength (β = 0.8), 
(c)–(d) for the intermediate SO coupling strength (β = 0.5), (e)–(f) for the relatively weak SO coupling strength (β = 0.35). (a), (c), (e) 
J = 0.1; (b), (d), (f ) J = 0.3.

Laser Phys. 25 (2015) 025501
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strong SO coupling regime (β  > 0.5), the intermediate SO 
coupling regime (β = 0.5), and the relatively weak SO cou-
pling regime (β < 0.5).

First, we consider the energy levels of the system in the 
strong SO coupling regime, which means that the interwell 
spin-flip tunneling strength σσ′J  is stronger than the Raman 
coupling strength Ω (i.e. β  >  0.5). We plot the mean-field 
energies as functions of the Raman coupling strength Ω with 
g = 0.5 and β = 0.8 in figures 2(a) and (b) for J = 0.1 and J = 0.3 
respectively. They show that the four linear energy levels E1−4 
still exist but their values are shifted by g/4. Besides them, 
two energy levels E5 and E6 appear. The tunneling amplitude J 
does not change the number of levels, but it changes the posi-
tions of the new energy levels E5,6. As the tunneling amplitude 
increases, the energy levels E5 and E6 move to separate (as 
shown in figures 2(a) and (b)). When the tunneling amplitude 
is equal to a half of the interaction strength, the energy levels 
E5 and E6 just separate. For an even stronger tunneling ampli-
tude, the energy levels E5 and E6 no longer intersect (as shown 
in figure 2(b)).

For the interwell SO coupling strength σσ′J  equal to the 
Raman coupling strength (β = 0.5), all the energy levels have 
a similar distribution with those in the relatively strong SO 
coupling regime, except that the energy levels E2 and E3 are 
degenerate (figures 2(c) and (d)). The atomic interaction does 
not change the degeneracy.

We now discuss the energy levels of the system in the rela-
tively weak SO coupling regime. In this regime, the SO cou-
pling strength σσ′J  is weaker than the Raman coupling strength 
Ω (i.e. β < 0.5). We take β = 0.35 as an example and plot the 
mean-field energy levels as functions of the Raman cou-
pling strength Ω in figures 2(e) and (f). The major difference 
between this regime and the above two regimes is the appear-
ance of another energy level E7, which is the joint action of the 
tunneling amplitude, SO coupling strength, Raman coupling 
and atomic interaction.

It is worth noting that the energy levels E5, E6 and E7 just 
appear under certain conditions. The energy level E5 appears 
under the conditions J − β Ω + g/2 > 0 and J − β Ω − g/2 < 0, the 
energy level E6 appears under the conditions J + β Ω + g/2 > 0 
and J + β Ω − g/2 < 0, and the energy level E7 just appears 

under the conditions −g − 4β J < Ω < − 2J, 2J < Ω < g + 4β J 
and β < 0.5.

In the above calculation, we find the interaction only gives 
rise to a shift g/4 for E1 − 4,

 = +    =E E
g

i
4

( 1, 2, 3, 4) .i i
0 (12)

While for the energy levels E5−7, the energy shift induced by 
the interaction is nonlinear,

 ⎜ ⎟
⎛
⎝

⎞
⎠βΩ= + − −E E

g
J

g1

2
,5 1

2

(13)

 ⎜ ⎟
⎛
⎝

⎞
⎠βΩ= + − +E

g
J

g1

2
,3

2

(14)

 ⎜ ⎟
⎛
⎝

⎞
⎠βΩ= + + +E E

g
J

g1

2
,6 2

2

(15)

 ⎜ ⎟
⎛
⎝

⎞
⎠βΩ= + + −E

g
J

g1

2
.4

2

(16)

Table 1. The stationary states and their properties.

al↑ al↓ ar↑ ar↓ Slx Slz Srx Srz P

∣E1〉 −0.5 0.5 −0.5 0.5 −0.25 0 −0.25 0 1
∣E2〉 −0.5 −0.5 0.5 0.5 0.25 0 0.25 0 −1
∣E3〉 0.5 −0.5 −0.5 0.5 −0.25 0 −0.25 0 −1
∣E4〉 0.5 0.5 0.5 0.5 0.25 0 0.25 0 1

∣ ⟩E5
1 ξ1 −ξ1 ξ2 −ξ2 χ2 0 χ1 0 ×

∣ ⟩E5
2 ξ2 −ξ2 ξ1 −ξ1 χ1 0 χ2 0 ×

∣ ⟩E6
1 ξ3 ξ3 −ξ4 −ξ4 χ3 0 χ4 0 ×

∣ ⟩E6
2 ξ4 ξ4 −ξ3 −ξ3 χ4 0 χ3 0 ×

∣ ⟩E7
1 ξ5 ξ6 −ξ7 −ξ8 χ5 κ1 χ6 −κ2 ×

∣ ⟩E7
2 ξ6 ξ5 −ξ8 −ξ7 χ5 −κ1 χ6 κ2 ×

∣ ⟩E7
3 ξ7 ξ8 −ξ5 −ξ6 χ6 −κ2 χ5 κ1 ×

∣ ⟩E7
4 ξ8 ξ7 −ξ6 −ξ5 χ6 κ2 χ5 −κ1 ×

Figure 3. Schematic representation of symmetry breaking and the 
resulting degenerate states for the energy levels E5 and E6.
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2

2
.

4

2 2 2
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(20)

All these results are consistent with the numerical solutions 
from directly solving the equation (7).

4. Symmetry and degeneracy of the energy levels

To understand more clearly the stationary states and the 
degeneracy of the above levels, we introduce spin opera-

tors ̂ ̂ ̂ ̂̂ = +↓
†

↑ ↑
†

↓( )S a a a a
1

2
jx j j j j , ̂ ̂ ̂ ̂̂ = −↑

†
↓ ↓

†
↑( )S

i
a a a a

1

2
jy j j j j , 

̂ ̂ ̂ ̂̂ = −↑
†

↑ ↓
†

↓( )S a a a a
1

2
jz j j j j , ̂ ̂ ̂= +S S Sx lx rx, and the parity operator 

̂P  : ̂ ̂ ̂ ̂  ↔  ↑ ↓ ↑ ↓( ) ( )a a a a, ,l l r r , which interchanges the two wells 
labeled by l and r. The spin operators defined above reflect the 
symmetry of the occupation of spin-up and spin-down states 
in the same well, and the parity reflects the symmetry of the 
same spin state between the double wells. In the mean-field 
approximation, we have ̂⟨ ⟩ ≡S Sj xyz j xyz, , , ̂⟨ ⟩ ≡S Sx x and ̂⟨ ⟩ ≡P P 
with Sj, xyz, Sx and P being c numbers. The stationary states and 
their energy level properties are shown in table 1.

The non-degenerate stationary states ∣E1−4〉 of the energy 
levels E1−4 exist at odd or even parity when identical spin 
states exchange between the left and right wells. Specifically, 
for ∣E1〉 and ∣E4〉 (∣E2〉 and ∣E3〉), the parity is even (odd); that 
is, the exchange of identical spin states between the two wells 
is symmetric (anti-symmetric). On the other hand, as we can 
see from table  1, the different spin states in the same well 
exhibit anti-symmetry for the stationary states ∣E1〉 and ∣E3〉, 
and symmetry for the stationary states ∣E2〉 and ∣E4〉. For all 
these stationary states ∣E1−4〉, Sjz = 0, which reflects that the 
distribution of the particle numbers in the four modes (l↑, l↓, 
r↑, r↓) is always the same.

For the energy levels E5 and E6, the parity breaking (shown 
in table  1) leads to double-degeneracy for both of them. 
The schematic representations for two degenerate states 
∣ ⟩  ∣ ⟩( )E E5

1,2
6
1,2  of the energy level E5(E6) are shown in figure 3. 

For the ∣ ⟩E5
1,2  and ∣ ⟩E6

1,2 , two identical spin states no longer 
exhibit symmetry between the double wells. However, the 
ratio of the probability amplitudes for identical spin states, 
η = alσ/arσ, takes on, for the two degenerate states ∣ ⟩E5

1  and ∣ ⟩E5
2  

∣ ⟩( E6
1  and ∣ ⟩)E6

2 , two values η1 and 1/η1 (η2 and 1/η2) that are 
reciprocal, respectively. We show in figures 4(c) and (d) the 
variation of η with respect to the Raman coupling strength. 
Also we can easily derive the expectations of the spin opera-
tors. For two degenerate states of the energy level E5, Slx and 
Srx take on χ1 and χ2, or χ2 and χ1 respectively. In general, 
χ1,2 has different values. In figures 4(a) and (b) we show the 

Figure 4. The properties of stationary states for the energy levels E5 and E6. (a) and (b) for Sjx of the energy levels E5 and E6 respectively. 
(c) and (d) for the proportion η = alσ/arσ of the two identical spin states between the double wells for E5 and E6, where J = 0.1, β = 0.35, 
and g = 0.5.
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variation of Sjx with respect to the Raman coupling strength. 
Combining the sign of Sjx and Sjz  =  0 shows that different 
spin states in the same well exhibit anti-symmetry for each 
of the degenerate states ∣ ⟩E5

1  and ∣ ⟩E5
2 . The case is similar for 

the degenerate states of the energy level E6 except that they 
exhibit symmetry for each of the degenerate states ∣ ⟩E6

1  and 
∣ ⟩E6

2 . The values of the total spin Sx do not change with the 
system parameters; specifically, for ∣ ⟩E5

1,2  and ∣ ⟩E6
1,2 , = −S 0.5x

5  
and =S 0.5x

6 , respectively. This difference in the angular 
momentum can be used to distinguish the energy levels E5 
and E6 from each other.

For the energy level E7, the symmetry breaking leads to 
four degenerate states ∣ ⟩E7

1 , ∣ ⟩E7
2 , ∣ ⟩E7

3  and ∣ ⟩E7
4  (see the sche-

matic representation in figure 5). For each of these four states, 

Sjx and Sjz change with the system parameters. Figures 6(a) 
and (b) show the changes of Sjx and Sjz with the Raman cou-
pling strength respectively. One can see the symmetry breaks 
for different spin states in the same well, and for identical spin 
states between two wells.

The energy levels E5−7 show macro-symmetry between dif-
ferent stationary states of the same energy level. Although for 
each state of E5, the symmetry between the left and right wells 
is broken, the two stationary states ∣ ⟩E5

1  and ∣ ⟩E5
2  are symmetric 

with respect to each other under the exchange of the left and 
right wells, and so are the states ∣ ⟩E6

1  and ∣ ⟩E6
2 . The stationary 

states of the energy level E7 have rich symmetry properties 
with respect to each other. Two pairs of stationary states, ∣ ⟩E7

1,3  
and ∣ ⟩E7

2,4 , are symmetric under the exchange of the two wells, 

Figure 5. Schematic representation of symmetry breaking and the resulting degenerate states for the energy level E7.

Figure 6. The properties of the stationary states for the energy level E7. (a) and (b) for Sjx and Sjz respectively, where J = 0.1, 
β = 0.35, g = 0.5.
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respectively, whereas another combination of two pairs of sta-
tionary states, ∣ ⟩E7

1,2  and ∣ ⟩E7
3,4 , shows the symmetry under the 

exchange of spin-up and spin-down.

5. Conclusion

In summary, we have presented a comprehensive analysis of 
the energy levels for a specific SOC BEC in a double-well 
trapping potential. The mean-field analysis shows that the 
energy levels are modified significantly by the atomic inter-
action: three energy levels emerge as long as the interaction 
is included. The effects of the tunneling amplitude, the SO 
coupling, and the Raman coupling on the energy levels are 
also illustrated. The analytical expressions of the mean-field 
energies are obtained, which are consistent with the numeri-
cal results. We also investigated the degeneracy of the energy 
levels and the related symmetries of each stationary state. 
The symmetry breaking induces the multi-degeneracy of the 
energy levels. Moreover, we investigated the macro-symmetry 
of the system, i.e. the symmetric properties between the sta-
tionary states of the degenerate energy levels. Since the SOC 
BECs have already been achieved in recent experiments, and 
the system parameters are highly tunable, we hope our results 
will stimulate the experiment in this direction.
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