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Geometric observation for Bures fidelity between two states of a qubit
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In this Brief Report, we present a geometric observation for the Bures fidelity between two states of a qubit.
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I. INTRODUCTION

As is well known, thetrace distanceand theBures fidelity
are two important distance measures for quantum comp
tion and quantum information@1–7#. A qubit is completely
described by the 232 density matrix as

r~n!5 1
2 ~11sW •n!,unu<1, ~1!

where1 is the unit matrix,sW 5(sx ,sy ,sz) the Pauli matri-
ces vector, andn the Bloch vector.unu51 corresponds to a
pure state, otherwise, a mixed state. Let

r15 1
2 ~11sW •u!,

r25 1
2 ~11sW •v! ~2!

be two states of a qubit. The trace distance and the B
fidelity betweenr1 andr2 are defined by the equations

D~r1 ,r2!5 1
2 trur12r2u, ~3!

F~r1 ,r2!5@ trAAr1r2Ar1#2. ~4!

One can write Eq.~3! as

D~r1 ,r2!5
uu2vu

2
, ~5!

so that the trace distance between two single qubit states
a simple geometric interpretation as half the ordinary Euc
ean distance between points on the Bloch sphere. Howe
no similarly clear geometric interpretation is known for t
Bures fidelity between two states of a qubit@7#. The purpose
of this brief report is to provide a geometric observation
the Bures fidelity for the case of a qubit. In Sec. II, a defin
geometric relation is formulated for the Bures fidelity
terms ofhyperbolic parameters. A conclusion is made in the
last section.
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II. FORMALISM

Theorem.The Bures fidelity between statesr1 and r2 is
equal to

F~r1 ,r2!5
cosh~fw/2!

coshfu

cosh~fw/2!

coshfv
, ~6!

wheref i ( i 5u,v,w) are rapidities.
Proof. Let us introduce the hyperbolic parameter ‘‘f’’ to

represent the Bloch vector as

u5û tanhfu , ~7!

where û5u/uuu is a unit vector. It is easy to checkuuu<1
because ofu tanhfu u<1; fu50 corresponds touuu50,
while fu→` corresponds touuu51. In other words, Eq.~7!
is a one-to-one mapping betweenfu andu.

At this moment, the density matrixr(u) can be rewritten
as

r~u!5 1
2 ~11sW •û tanhfu!. ~8!

It is not difficult to observe that the relation between t
density matrixr(u) and the Lorentz boost matrix

L~u!5expS wu

2
sW •ûD51coshS wu

2 D1sW •û sinhS wu

2 D
is

r~u!5
L~u!

2 coshfu
, fu5wu/2. ~9!

Obviously,r(u) andL(u) are in one-to-one correspondenc
For the former, the physical meaning of the vectoru is the
Bloch vector in quantum mechanics, while for the latter, t
relativistic velocity. Due to the rapidityw, i.e., the hyperbolic
angle, special relativity can be formulated in terms of hyp
bolic geometry. Consequently, some physical quantities h
been found to have definite geometric meanings, such as
Thomas rotation angle~sometimes also called the Wigne
angle! corresponds to the defect of a hyperbolic triang
@8,9#. Since r(u) and L(u) are in one-to-one correspon
dence, we are led to view the Bloch vectoru as a relativistic
velocity, and the anglef as the rapidity. Accordingly, we
©2002 The American Physical Society03-1
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will uncover a geometric interpretation for the quantum
delity F(r1 ,r2) in the framework of hyperbolic geometry.

From the addition law of velocities in special relativity

w5u% v5
1

11
u•v

c2

Fu1
1

gu
v1

1

c2

gu

11gu
~u•v!uG ,

~10!

wheregu51/A12uuu2/c2 is the Lorentz factor andc is the
speed of light in vacuum space, we have

gw5gugv~11u•v!, ~11!

or

coshfw5coshfu coshfv~11û• v̂ tanhfu tanhfv!,
~12!

which is the Cosin law in the hyperbolic geometry.
From Eq.~9!, one obtains

Ar~u!5
cosh~fu/2!

2 coshfu
@11sW •û tanh~fu/2!#. ~13!

From det(Ar1r2Ar12L1)50, we have

L22
gw

2gugv
L1

1

16gu
2gv

2 50, ~14!

so that

L65
coshfw6sinhfw

4 coshfu coshfv
. ~15!

Thus, the Bures fidelity is

F~r1 ,r2!5~AL11AL2!25
cosh~fw/2!

coshfu

cosh~fw/2!

coshfv
.

~16!

This ends the proof.
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III. CONCLUSION

In Fig. 1, we draw a hyperbolic triangleDABC formed by
three hyperbolic angles$fu5uABu,fv5uACu,fw5uBCu%,
whereD is the midpoint of the sideBC. As one can see tha
the trace distanceD(r1 ,r2)5uu2vu/2 is related to an ordi-
nary Euclidean triangle, whose three sides areuuu, uvu, and
uu2vu; similarly, the Bures fidelity is related to a hyperbol
triangle, it is the product of the ratio cosh(fw/2)/coshfu and
the ratio cosh(fw/2)/coshfv . From Eq.~16!, one easily sees
that F(r1 ,r2) is symmetric in its inputs, i.e.,F(r1 ,r2)
5F(r2 ,r1), and is invariant under unitary transformation
on the state space.

In conclusion, we have presented a geometric observa
for the Bures fidelity between two states of a qubit. It is a
interesting and significant to study the geometric meaning
the Bures fidelity for the case of a qunit~i.e., a
N-dimensional quantum object,N52 corresponds to a qubit!
@10#, since the calculation becomes much more complica
we shall investigate it elsewhere. Nevertheless, we beli
that a similar simple hyperbolic geometric relation, such
Eq. ~16!, is possibly held for the case of a qunit.

FIG. 1. The hyperbolic triangleDABC. Its three sides are
uABu5fu5tanh21 uuu, uACu5fv5tanh21 uvu, uBCu5fw

5tanh21 uwu. D is the midpoint of the sideBC. The angle between
AB andAC is equal top2arccos(û• v̂).
.
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