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Geometric observation for Bures fidelity between two states of a qubit
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In this Brief Report, we present a geometric observation for the Bures fidelity between two states of a qubit.
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I. INTRODUCTION Il. FORMALISM

Theorem.The Bures fidelity between statgs and p, is

As is well known, therace distanceand theBures fidelity equal to
a-

are two important distance measures for quantum comput
tion and quantum informatiofl—7]. A qubit is completely cosh( ¢,/2) cosh b,,/2)
described by the 2 density matrix as F(p1,p2)=

coshe,, coshe, ' ©®
p(n)= 3(1+4-n),|In|<1, (1) whereg,; (i=u,v,w) are rapidities.
Proof. Let us introduce the hyperbolic parametaep™to
wherel is the unit matrix,o=(oy,0,,0,) the Pauli matri-  represent the Bloch vector as
ces vector, anah the Bloch vector|n|=1 corresponds to a
pure state, otherwise, a mixed state. Let u=0tanhg,, (7)

p1=1(1+6-u), whereG=u/|u| is a unit vector. It is easy to chedk|<1
because of|tanh¢,|<1; ¢,=0 corresponds tqu|=0,
while ¢,— 20 corresponds tdu|= 1. In other words, Eq(7)
is a one-to-one mapping betweeér andu.

At this moment, the density matrix(u) can be rewritten

po=5(1+G-v) @

be two states of a qubit. The trace distance and the Bure
fidelity betweenp,; andp, are defined by the equations

p(u)= 3(1+¢&-0tanhgy,). (8)
D(p1.p2)= 3 ttlp1—pal, )
It is not difficult to observe that the relation between the
density matrixp(u) and the Lorentz boost matrix
F(p1.p2) =[tr\p1p\pe]2. (4) y matrixp(u)
One can write Eq(3) as L(u)= exp{%&- 0) = 1cos|‘( %) +a-0 sin){ %)
lu—v| -
D(p11p2)= 2 ) (5) IS
_ L _
so that the trace distance between two single qubit states has p(u)= 2 coshe,’ b= @ /2. (9)

a simple geometric interpretation as half the ordinary Euclid-
ean distance between points on the Bloch sphere. HoweveQbviously,p(u) andL(u) are in one-to-one correspondence.
no similarly clear geometric interpretation is known for the For the former, the physical meaning of the veatois the
Bures fidelity between two states of a quibif. The purpose  Bloch vector in quantum mechanics, while for the latter, the
of this brief report is to provide a geometric observation forrelativistic velocity. Due to the rapidity, i.e., the hyperbolic
the Bures fidelity for the case of a qubit. In Sec. Il, a definiteangle, special relativity can be formulated in terms of hyper-
geometric relation is formulated for the Bures fidelity in bolic geometry. Consequently, some physical quantities have
terms ofhyperbolic parametersA conclusion is made in the been found to have definite geometric meanings, such as the
last section. Thomas rotation anglésometimes also called the Wigner
angle corresponds to the defect of a hyperbolic triangle
[8,9]. Since p(u) and L(u) are in one-to-one correspon-
*Email address: jinglingchen@eyou.com dence, we are led to view the Bloch vectoas a relativistic
"Email address: abrahamngar@ndsu.nodak.edu velocity, and the anglep as the rapidity. Accordingly, we
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will uncover a geometric interpretation for the quantum fi-
delity F(p1,p>) in the framework of hyperbolic geometry.
From the addition law of velocities in special relativity

1

(10

where y,=1/\/1—[u[?/c? is the Lorentz factor and is the
speed of light in vacuum space, we have

Yw= Yur(1+U-v), (11
or
coshg,,= cosh¢, coshe,(1+ G- Vtanhg,tanhe,),
(12
which is the Cosin law in the hyperbolic geometry.
From Eq.(9), one obtains
costi¢,/2) -
\/p(U)—W[l"f‘U-UtanI’((ﬁu/Z)]. (13
From det{/p,p,\/p;—A1)=0, we have
Yw 1
A?— A+ = 14
2van 16v45 14
so that
coshp,, = sinh
MW ¢W (15)

Ae=g cosh¢, coshe,’
Thus, the Bures fidelity is

F(p1,p2)=(VA  + VA _)?

3 cosh ¢, /2) cosh ¢,/2)
~ cosh¢, coshg,

(16)

This ends the proof.
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FIG. 1. The hyperbolic trianglAABC. Its three sides are
|AB|=¢,=tanh*|ul,  |AC|=¢,=tanh'|v|,  [BC|=d,
=tanh 1|w|. D is the midpoint of the sid8C. The angle between
AB andAC is equal tor—arccos{- V).

IlI. CONCLUSION

In Fig. 1, we draw a hyperbolic triangleAB C formed by
three hyperbolic angle$®,=|AB|,¢,=|AC|,¢,=|BC|},
whereD is the midpoint of the sidBC. As one can see that
the trace distanc®(p,,p,)=|u—V|/2 is related to an ordi-
nary Euclidean triangle, whose three sides [ale |v|, and
|u—v|; similarly, the Bures fidelity is related to a hyperbolic
triangle, it is the product of the ratio coshy/2)/cosh¢, and
the ratio coshg,,/2)/cosh¢, . From Eq.(16), one easily sees
that F(p1,p,) is symmetric in its inputs, i.e.F(pi,p2)
=F(p,,p1), and is invariant under unitary transformations
on the state space.

In conclusion, we have presented a geometric observation
for the Bures fidelity between two states of a qubit. It is also
interesting and significant to study the geometric meaning of
the Bures fidelity for the case of a quniti.e., a
N-dimensional quantum objedt,i=2 corresponds to a qubit
[10], since the calculation becomes much more complicated,
we shall investigate it elsewhere. Nevertheless, we believe
that a similar simple hyperbolic geometric relation, such as
Eq. (16), is possibly held for the case of a qunit.
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