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The Majorana’s stellar representation, which represents the evolution of a quantum state with the
trajectories of the Majorana stars on a Bloch sphere, provides an intuitive way to study a physical
system with a high dimensional projective Hilbert space. In this Letter, we study the Berry phase by these
stars and their loops on the Bloch sphere. It is shown that the Berry phase of a general spin state can be
expressed by an elegant formula with the solid angles of Majorana star loops. Furthermore, these results can
be used to a general state with arbitrary dimensions. To demonstrate our theory, we study a two mode
interacting boson system. Finally, the relation between stars’ correlations and quantum entanglement
is discussed.
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Introduction.—The Berry phase, which reveals the gauge
structure associated with cyclic evolution in Hilbert space
[1], has become a central unifying concept of quantum
theory [2,3]. After being introduced into quantum mechan-
ics by Berry [4], this phase has been found to play an
important role in the study of many important physics
phenomena, such as the quantum Hall effect [5,6], polari-
zation of crystal insulators [7], topological phase transition
[8], and holonomic quantum computation [9]. This phase,
also known as the geometric phase, reveals the fact that a
quantum eigenstate jΨi will acquire an additional geo-
metric phase factor

H
−ImhΨjdRjΨi in cyclic adiabatic

processes, where the integral only depends on the geo-
metric path of R in the parameter space.
For the simplest case of an arbitrary two-level state, the

geometric path can be perfectly represented by the close
trajectory of a point on the Bloch sphere, and the Berry
phase is proportional to the solid angle subtended by it.
This geometric interpretation seems hard to use for a large
spin system because it is difficult to imagine the trace of a
state in the higher dimensional space. However, Majorana’s
stellar representation (MSR) builds us a bridge between the
high dimensional projective Hilbert space and the two-
dimensional Bloch sphere [10]. In MSR, one can describe a
spin-J state (or, equivalently, an n body two-mode boson
state with n ¼ 2J [11]) intuitively by 2J points on the two-
dimensional Bloch sphere rather than one point on a high
dimensional geometric structure, and these 2J points are
called Majorana stars (MSs) of the system. This naturally
provides an intuitive way to study the Berry phase for a
high spin system [12].
The reason for Majorana’s stellar representation drawing

much more attention recently is the studying of spin-orbit
coupling in cold atom physics [13,14]. In cold atom physics,

the large-spin atoms, such as lanthanide atoms, are intro-
duced as candidates in the process of inducing synthetic
gauge field by spin-orbit coupling, since their narrow line-
width transitionswill suppress the additional heating [15,16].
For high-spin condensates, spin-orbit coupling drives the
Majorana starsmoving periodically on the Bloch sphere, i.e.,
forming the so-called “Majorana spin helix.” Hence, one
will naturally ask, can we have an explicit relation between
the Berry phase and the Majorana stars’ helixes or loops?
Recently, Bruno established a novel representation of the
Berry phase of large-spin systems [17,18] by introducing
coherent state representation (CSR) into MSR, and the
geometric phase has been viewed as the Aharonov-Bohm
phase acquired by the Majorana stars as they move through
the gas of Dirac strings. However, in Bruno’s excellent work,
the connection between the Berry phase and geometric
trajectories of the MSs on the Bloch sphere is still not clear
or intuitive. Besides the above research, the MSR has also
found wide applications in various fields. The arrangements
and movements of stars have become a powerful tool to
study physical problems related to symmetry, such as
classifying the entanglement class [19] and computing the
spectrum of the Lipkin-Meshkov-Glick (LMG) model [20].
In this Letter, we present a novel formula for the Berry

phase of a spin system that gives an intuitive relation
between the Berry phase andMSs’ trajectories on the Bloch
sphere. We find that the Berry phase can be decomposed
into two contributions: one is from the sum of the solid
angles subtended by every Majorana star’s close trajectory;
the other one is from pair correlations between the stars,
which collect the solid angles by the relative motions of
each star pairs. Since any state can be parametrized by the
same process of MSR, these results can naturally be used
for any finite quantum system. Using a two-mode boson
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system, which can be realized in cold atoms physics
([21,22]), we calculate the Berry phase numerically to
verify our results. We also find the pair correlations
between stars are naturally related to the quantum entan-
glement of the particles. In this respect, it provides an
intuitive way to study measurement and classification of
multiparticle entanglement of n particles.
Berry phase in MSR.—As we know, a spin-1=2 state can

be described by a point on the Bloch sphere. For a spin-J
system, its angular momentum operators can be described
by the creation and annihilation operators of two mode
bosons with Schwinger boson representation [11]. Under
Schwinger boson representation, the basis of the spin-J
system jJmi is equivalent to a two mode boson state
jJ þm; J −mi. Therefore, a spin-J state

P
J
−J CmjJmi

equals to a generic state of an n-dimensional two mode
boson system jΨiðnÞ ¼ Pn=2

−n=2ððCmâ†ððn=2ÞþmÞb̂†ððn=2Þ−mÞÞ=
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððn=2Þ þmÞ!ððn=2Þ −mÞ!p ÞÞj∅i with n ¼ 2J, which
can be factorized as

jΨiðnÞ ¼ 1

NnðUÞ
Yn
k¼1

â†uk j∅i ð1Þ

¼ 1ffiffiffiffiffi
n!

p
NnðUÞ

X
P

juPð1ÞijuPð2Þi � � � juPðnÞi; ð2Þ

where NnðUÞ¼ ½ððnþ1Þ!=2nÞP½n=2�
k¼0 ðDn

k=ð2kþ1Þ!!Þ�ð1=2Þ
is the normalization coefficient with U ≡ fu1;…; u2Jg
(see Supplemental Material [23]). The expression of
symmetric function Dn

k [24] is Dn
k ≡

P
n
i1¼1

P
n
j1>i1

� � �P
n�
ik>ik−1

P
n�
jk>ik

ðui1 · uj1Þ � � � ðuik · ujkÞ, where the � indi-
cates a restriction on the summations so that all non-
repeated indices in each term take different values. The
sum

P
P being over all permutations P, takes 1; 2;…; n

to Pð1Þ; Pð2Þ;…; PðnÞ. The creation operators â†uk ≡
ðcosðθk=2Þâ† þ sinðθk=2Þeiϕk b̂†Þ and the annihilation
operators âuk satisfy ½â†ui ;â†uj �¼½âui ;âuj �¼0 and ½â†ui ; âuj � ¼
huijuji. And juki ¼ cosðθk=2Þâ†j∅i þ sinðθk=2Þeiϕk b̂†j∅i.
If one denotes â†j∅i ¼ j↑i and b̂†j∅i ¼ j↓i as the orthogo-
nal basis of a spin-1=2 state, respectively, then (2) can be
also understood as a full symmetrized state of n spin-1=2
particles [10]. Consequently, the above factorization will
give out n pairs of parameters θk;ϕk (k ¼ 1;…; n) which
correspond to n points ukðθk;ϕkÞ on the Bloch sphere.
Therefore, the quantum state in Eq. (2) and its evolution
can be depicted by these points so-called Majorana stars.
Specifically, for the state jΨiðnÞ, assuming x1; x2;…; xn
are the roots of the equation

Xn
k¼0

ð−1ÞkCn=2−kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − kÞ!k!p xn−k ¼ 0; ð3Þ

then the spherical coordinates θk and ϕk of uk can be given
by xk ¼ tanðθk=2Þeiϕk [10].
In particular, for an adiabatic cyclic evolution of the state

jΨiðnÞ, each star uk traces out an independent loop on the
sphere [12]. As we mentioned, this process will naturally
accumulate a Berry phase for jΨiðnÞ [4]. Hence, the
interesting task in our scheme, then, is to calculate the
Berry phase in terms of these parametrized loops. According
to Berry’s definition, the Berry phase for jΨiðnÞ reads γðnÞ ¼H
−ImðnÞhΨjdui jΨiðnÞ. Substitute Eq. (2) in it, and, after a

long but straightforward calculation, we find that the
contribution of respective evolution of each star can be
separated from those of correlations between the stars, and
the Berry phase becomes (see the Supplemental Material
[23] for details of derivation)

γðnÞ ¼ γðnÞ0 þ γðnÞC ; ð4Þ

where γ can be decomposed into two parts. One part,

γðnÞ0 ¼ −
P

n
i¼1 Ωui=2, is the sum of the solid angles

Ωui ¼
H ð1 − cos θiÞdϕi subtended by the closed evolution

paths of the MSs on the Bloch sphere [as Fig. 1(a) shows].
The other part of the Berry phase is

γðnÞC ¼ 1

2

I Xn
i¼1

Xn
jð>iÞ

βijΩðduijÞ; ð5Þ

which is characterized by the correlations between the
stars (hereafter we call it the correlation phase). Here,
ΩðduijÞ≡ ui × uj · dðuj − uiÞ=dij is the sum of solid
angles of the infinite thin triangle ðui;−uj;−uj − dujÞ
and (uj;−ui;−ui − dui), we denote as a pair solid angle.
βij, the correlation factor, is defined as

FIG. 1 (color online). A schematic illustration of (a) the solid
angles subtended by the parallel transports of uiðθi;ϕiÞ and
ujðθj;ϕjÞ on the Bloch sphere: Ωui (areas subtended by the blue
solid loop) and Ωuj (areas subtended by the red solid loop);
(b) the solid angle in moving frame [X0ððπ=2Þ þ θj;ϕjÞ;
Y 0ððπ=2Þ;−ðπ=2Þ þ ϕjÞ; Z0ðθj;ϕjÞ] subtended by the parallel
transports of the relative evolution path between the two stars
in (a): Ωu0i

(areas subtended by the blue solid loop)
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βijðDÞ≡ −
dij

N2
nðDÞ

∂N2
nðDÞ

∂dij ; ð6Þ

with D ¼ fdijg (i < j), in which dij ≡ 1 − uiuj as
the “distance” between two stars uiðθi;ϕiÞ and
ujðθj;ϕjÞ. Note that the normalization coefficient N2

nðUÞ
only contains the products of the first degrees of dij (see the
Supplemental Material [23]), and then can be written as
N2

nðDÞ¼−dijð∂N2
nðUÞ=∂dijÞþ termswithout a pairðui;ujÞ.

Therefore, correlation factor βijðDÞ is nothing but the
weight of the dij dependent terms to N2

nðDÞ. Hence, the
correlation phase can be described as the solid angles
between each pair of stars weighted by their correlation
factor βij.
Indeed, the pair solid angle ΩðduijÞ can be expressed by

the relative evolutions between ui and uj, and the absolute
evolutions of themselves. Consider the moving frame in
which the star ujðθj;ϕjÞ is fixed and located at the z axis
zð0; 0Þ; the spherical coordinates of the other star uiðθi;ϕiÞ
changes into u0iðjÞðθ0iðjÞ;ϕ0

iðjÞÞ in this frame correspondingly

(as Fig. 1 shows). On the contrary, we can also obtain the
relative vector u0jðiÞðθ0jðiÞ;ϕ0

jðiÞÞ of uj in the moving frame

with uiðθi;ϕiÞ fixed at the z axis. The pair solid angle
ΩðduijÞ vector becomes (see Supplemental Material [23]
for details)

ΩðduijÞ ¼ ½dϕ0
iðjÞ þ dϕ0

jðiÞ� þ ðcos θidϕi þ cos θjdϕjÞ;
ð7Þ

where θ0 ¼ θ0jðiÞ ¼ θ0iðjÞ is the angle between ui and uj.

Note that the form ΩðduÞ ¼ ð1 − cos θÞdϕ is precisely
the integration element for the solid angle Ωu subtended
by the path of the star uðθ;ϕÞ. If we integrate Eq. (7),
the geometric meaning of ΩðduijÞ emerges immediately.

Therefore, the meaning of the correlation phase γðnÞC is quite
clear: it consists of the collection of the weighted relative
evolutions between the stars

γðnÞRij ≡ 1

2

I
βijðDÞ

Ωðdu0iðjÞÞ þΩðdu0jðiÞÞ
1 − uiuj

; ð8Þ

with Ωðdu0iðjÞÞ ¼ ð1 − cos θ0Þdϕ0
iðjÞ and the collection of

the weighted absolute evolutions of the pairs of stars

γðnÞAij ≡ 1

2

I
βijðDÞ½cos θidϕi þ cos θjdϕj�: ð9Þ

Namely, γðnÞC ¼ γðnÞR þ γðnÞA ¼ P
n
i¼1

P
n
jð>iÞðγðnÞRij þ γðnÞAijÞ.

So far, we know that the Berry phase in MSR consists of
not only the solid angles subtended by the paths of the stars
but also their correlations. These results in Eqs. (4) and (5)
are proved to be consist with the marvelous one in
Ref. [17], which is derived by introducing the coherent
state representation into MSR of the spin-J system.

There follow several notes for some specific cases.
(i) All the stars locate on one single point, i.e., become

coincident stars. For this special case βij and ΩðduijÞ have
value zero, the Berry phase in Eq. (4) will be reduced to the
sum of solid angles of all stars. This corresponds to the spin
coherent state [17,25].
(ii) This case is just for a spin J in a uniform magnetic

field B ¼ Bðsin θ cosφ; sin θ cosφ; cos θÞ. Its eigenstate

jΨið2JÞm ¼ eiĴyθeiĴzφjJmi can be represented by J þm
coincident stars uðθ;φÞ and their J −m coincident
antipodal stars u0ðπ − θ; π þ φÞ. The Berry phase thus

becomes γð2JÞ ¼ γð2JÞ0 ¼ − 1
2
½ðJ þmÞΩu − ðJ −mÞΩu0 � ¼

−mΩu, which perfectly matches the result in Ref. [26].
(iii) All the stars rotate with the same angular velocity as

a rigid body. In this case, all the distances between star pairs
ui and uj are invariant. At this point, βij become constant,

and γðnÞC in Eq. (5) changes into a sum of solid angles as

γðnÞC ¼ 1
2

P
n
i¼1

P
n
jð≠iÞ βijΩðuijÞ, where ΩðuijÞ≡ H

ΩðduijÞ
are the solid angles accumulated by the infinite small solid
angles ΩðduijÞ. By integrating Eq. (7), ΩðuijÞ turns out
to be composed of the solid angles accumulated by the
relative evolution between ui and uj [as Fig. 1(b) shows],
and the solid angles accumulated by the evolutions of ui
and uj themselves [as Fig. 1(a) shows], i.e.,

ΩðuijÞ ¼
Ωu0

iðjÞ
þΩu0

jðiÞ

1þ uiuj
− ½ðΩui þ ΩujÞmodð2πÞ�; ð10Þ

where Ωu0
iðjÞ

(Ωu0
jðiÞ
) are the solid angles subtended by the

closed evolution paths of u0i (u0j) relative to uj (ui),
respectively.
(iv) The pairs of stars uiðθi;ϕiÞ and ujðθj;ϕjÞ are always

on the same circle of longitude or latitude. The former
refers to ϕi − ϕj ¼ 0;�π; i.e., the two stars and the z axis
zð0; 0Þ will always be in the same plane. It will accumulate
no loop by the relative motions between the two stars. For
the latter, we have θ1 ¼ θ2 and the sum of relative motions
between the two stars will also equal to zero owing to the

symmetry. Thus, γðnÞRij will vanish in both situations.

Besides, for θi ¼ θj, if we have ϕi þ ϕj ¼ const, γðnÞAij will
also vanish, and this star pair will give no contribution to
the correlation phase.
Two mode interacting boson system.—To illustrate

the above theoretical results, we now consider an
interacting boson system described by Hamiltonian H ¼
ðR sinθ=4Þðeiφâ†b̂þ e−iφb̂†âÞ þ ðR cosθ=2Þðâ†â− b̂†b̂Þþ
ðλ=4Þðâ†â− b̂†b̂Þ2, where R cos θ is the energy offset
between the two modes. The parameter R sin θeiφ measures
the coupling between the two modes, and λ ¼ g=V, with g
being the interaction strength between bosons and V being
the volume of the system. This model equals to a spin
system [20] and can be derived from the bosonic-field
Hamiltonian [27] and has received extraordinary attention
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in the literature on BECs [28]. We numerically calculate the
parameter dependent eigenstates of theH. Then, we use the
formula (to avoid errors from numerical differential, see
Ref. [12]) eiγ ¼ hψ jψ 0ihψ 0jψ 00i � � � hψ 0���0 jψi to calculate the
Berry phase γ, and compare it with the numerical result of
Eq. (4) in which the time evolutions of Majorana stars are
obtained by solving the roots of Eq. (3) for corresponding
eigenstates numerically.
For λ ¼ 0, the Hamiltonian H reduces to the one

of the spin-n=2 states in a magnetic field B ¼
ðR=2Þðsin θ cosφ; sin θ cosφ; cos θÞ as in case (ii) above.
Therefore, for the mth eigenstate, we have γ¼ðn−2mÞΩu,
for example, 2Ωu1 for the ground state of H with two
bosons in Fig. 2(b), Ωu1 for the first excited state of three
bosons in Fig. 2(c), and 0 for the second excited state of
four bosons in Fig. 2(d), respectively.
As the interacting constant λ increases, the interaction

between the bosons breaks the coincidences of stars. Note
that our system can be mapped on to a spin system
described by the LMG model similar to Ref. [20]; the
stars for the instantaneous eigenstate of H are thus spread
over two curves on the Bloch sphere. Its mth eigenstate has
nþ 1 −m stars on one curve and m − 1 stars on the other
curve [20], such as the ground state, 4th excited state,
and 10th excited state for ten bosons shown in Fig. 2(a). As
the adiabatic parameters evolve, the trajectories of stars
become several different loops and the correlation phases
arise. As Fig. 2 shows, the phase γðnÞR vanishes due to the
symmetry between the stars on the two curves. And the
Berry phase γ, calculated directly by its original definition,
perfectly matches with γ0 þ γC in our theory.
Besides, we can use these changes of the symmetry of

the states to clarify the type of state, e.g., the states of two
bosons with coincident stars or separated stars [see the
spheres in Fig. 2(b)]: the states of three bosons with three
coincident stars, two coincident stars, or three separated
stars [see the spheres in Fig. 2(c)]. This clarification is
according to the correlation between stars and may be
related with entanglement.
Correlations between stars and quantum entanglement.—

In particular, the spin-J state in Eq. (1) is equal to a
symmetric 2J-qubit pure state. By studying the entangle-
ment of these symmetric qubit pure states, the entangle-
ment of two and three qubits is found to be determined
by the distance dij. For n ¼ 2, the concurrence [29] equals
to C ¼ d12=2N2

1. Therefore, the correlation phase of the

state is directly related to its entanglement: γð2ÞC ¼
1
2

H
CΩðdu12Þ. For n ¼ 3, there exist different measure-

ments for three different entanglement classes [19,30] of
states: the concurrence for the W type [31] of states
becomes C12 ¼ ð2d12=3N2

3Þ, where two of the three stars
coincide with each other, and the correlation phase of theW
type state can be written in the form of concurrence like two
qubits: γð3ÞC ¼ 3

2

H
Ωðdu12ÞC12; the 3 tangle [32] for the

Greenberg-Horne-Zeilinger (GHZ) [33] type of states can

be written as τ ¼ 2
3
β12β13β23N2

3 with three unequal stars;
the same three stars at one point bring no entanglement and
thus no correlation phase for the separable states. This
means that the types of entanglement can be distinguished
by the number of unequal stars (or diversity degree of
the state [19]), and measured by a normalized product of
the distance between unequal stars. Since the classification
of entanglement by the number of unequal stars also
holds for n qubits ([19]), such as the separable type
(ns ¼ 1), W type (ns ¼ 2), and GHZ type (ns ¼ n), the
normalized product of distances between unequal stars

ðQns
i; j ¼ 1i < j

dijÞ=N2ðns−1Þ
n may be a valid measure of

entanglement. Besides, there are some other points for
MSR worth further study, such as identical particles in
MSR and stars with permuted ends. We will address all
these issues in a future paper.
Discussion.—The Majorana’s stellar representation and

recently relevant applications have indicated that the
evolution of a high spin state can be displayed intuitively
by loops of MSs on the Bloch sphere. Our study here is
to show how we “readout” the physical effects of the
state such as the Berry phase and entanglement from
these stars and loops. The discussion shows that the
Berry phase of a spin-J state is not only determined by
the solid angles subtended by every Majorana star’s
evolution path but also associated with the correlation
between the stars. However, if we treat the MSR as a
parametrizing process, MSR can be used for any states
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FIG. 2 (color online). (a) The trajectories and arrangements
of stars for the eigenstates of ten bosons with λ=R ¼ 0.3.
Dependence of the Berry phase on λ=R and trajectories of
Majorana stars (red loops on spheres) for (b) the ground state
of the interaction boson Hamiltonian H with two bosons, (c) the
first excited state of three bosons, and (d) the second excited
state of four bosons. The inset in (b) shows the evolution of θ
and φ in parameter space.
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in a Hilbert space of arbitrary dimensions. For an
n-dimensional generic state jψin ¼ P

n
m¼1 Cmjmi, we

can still use the roots yi ¼ tanðθ0i=2Þeiϕ0
i of equationP

n−1
l¼0 ½ð−1ÞlCn−lyn−1−l�=½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn−1− lÞ!l!p �¼0 to define
n − 1 Majorana stars uiðθ0i;ϕ0

iÞ. These stars can also
represent state jψin accordingly. Since the Berry phase
is decided by the parameter-dependent probability ampli-
tudes Cm with unchanged basis jmi, and the basis jmi of
dimension n can be mapped to the basis of state for a spin-
ðn − 1Þ=2 system. The Berry phase for jψin will take the
same form as Eq. (3). Therefore, our results for the Berry
phase actually hold for any finite quantum system, and can
be widely applied in various fields.
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