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Abstract
We study the formation of stable heteronuclear tetramers from ultracold atoms via two different
paths by generalized Raman adiabatic passage. The dynamical instability and adiabaticity of the
dark state are investigated. The regions for the appearance of dynamical instability are
analytically obtained and the adiabatic evolution is studied by adiabatic fidelity. Moreover, the
effects of the external field parameters on the conversion efficiency are investigated, and a
comparison is also drawn between the two different paths.
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1. Introduction

The preparation of an ultracold molecular gas has become one
of the most interesting areas in the field of ultracold atom-
molecule physics in recent years because of its potential
application in quantum information [1, 2], in quantum com-
putation [3] and in precision measurement [4, 5]. Currently,
two methods are used to create ultracold molecules: direct
cooling and indirect cooling. The standard direct laser cooling
technique [6–8], as developed for atoms roughly three dec-
ades ago, is technically complicated and is difficult for
molecules, because of their complex internal energy-level
structure. Until recently, this technique was applied to cool
SrF [52] and YO [10] to a few millikelvin or less. Other direct
cooling strategies include buffer gas cooling [11], Stark or
Zeeman deceleration [12–15], velocity filtering [16],

sympathetic cooling [17, 18] and Sisyphus cooling [19].
However, these direct cooling approaches have typically been
restricted to the millikelvin temperature range. The indirect
association techniques from precooled atoms via Feshbach
resonances [20–30] (FR) and photoassociation [31–36] (PA)
promise access to much lower temperatures. However, these
processes either produce molecules exclusively in weakly
bound ro-vibrational levels or suffer from low production
rates and low state selectively. For the fermionic atoms with
FR [25–29], due to the suppression of molecular decay by
Pauli blocking, the resulting molecules can be long lived, and
some have even been cooled to quantum degeneracy or near-
degeneracy.

To produce a quantum gas of molecules in their deeply
bound ground state, the stimulated Raman adiabatic passage
(STIRAP) technique has been regarded as an effective
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method [37–43, 47], taking advantage of the coherent popu-
lation trapping (CPT) state, or dark state [48–50]. Experi-
mentally, STIRAP has been used to coherently transfer the
extremely weakly bound Feshbach molecules to the deeply
bound vibrational ground-state diatomic molecules [38–43].
In particular, heteronuclear molecules [41–44] in the vibra-
tional ground state have received a lot of attention, because
they possess a strong electric dipole moment, leading to
anisotropic, long-range dipole–dipole interactions, which will
enable studies of fascinating many-body physics [45, 46].
Very recently, the STIRAP scheme was also used to create
the ultracold alkaline-earth-metal 84Sr2 molecule [47] from
atom pairs on sites of an optical lattice, which can not be
formed with the magnetoassociation technique because of the
lack of magnetic Feshbach resonances in the nonmagnetic
species. With the aid of FR and PA, the generalized Raman
adiabactic passage has been proposed to create stable
diatomic molecular condensate from an atomic Bose con-
densate [51], in which a single optical pulse is frequency
chirped to compensate for the mean-field shift arising from
the particle collisions, so that the CPT condition can be
dynamically maintained. This scheme was soon extended to
produce the stable homonuclear and heteronuclear triatomic
molecules [52–54], and even to convert Bose–Fermi [55] or
Fermi–Fermi [56] mixture atoms to their ground state com-
pounded molecules.

As a next step in complexity, the making and probing of
ultracold complex molecules has been attracting increasing
interest, both in theory and experiment. The first observation
of three-body Efimov resonance (ER) molecules [57] (of
133Cs2), first predicted in the early 1970 s [58], not only
demonstrated the existence of the weakly bound Efimov tri-
mer state but also opened up avenues of exploring intriguing
few-body physics. The ER timer molecules were soon
observed experimentally in three-component Fermi gases of
6Li [59, 60], in a Bose gas of 39K atoms [61] and even in
mixtures of 41K and 87Rb atoms [62]. Not only that, the ER
scenario was also extended to four-body systems with iden-
tical bosons [63–65]. Experimentally, the tetramer states were
recently realized in ultracold gas of cesium atoms [66]. Fur-
ther extension of the Efimov scenario to five-, six-, seven-, or
higher-body cluster states (N-body Borromean) has also been
predicted [67–71]. In fact, the Efimov state has a universal
characteristic that it does not depend on the details of the pair
potential. This makes it possible as an intermediate state
transferred to other molecular states and provides important
means for assembling ultracold polyatomic molecules. Based
on this character, with the help of ER and PA, generalized
Raman adiabatic passage has been recently proposed to create
tetramers [72, 73], pentamers [74] and even N-body polymer
molecules [75]. To obtain higher conversion efficiency, it is
crucial to study the stability and adiabaticity of the dark state
in these nonlinear atom–molecule conversion systems, as has
been widely done in [51, 74–79].

In the present paper, we investigate dynamical instability,
adiabaticity and controlling effects of external field para-
meters for the dark state in the heteronuclear atom–tetramer
conversion through generalized Raman adiabatic passage.

Here, the heteronuclear tetramers are formed via two paths,
i.e., trimers A3 or A B2 are first created by ER, and then
coupled with another atom to a bound tetramer A B3 via PA.
We first model the system and derive the coherent
atom–molecule dark-state solutions for the two different
paths. Then we focus on the dynamical instability analysis of
the atom–tetramer dark state via the linear stability theorem,
and the unstable parameter regions are obtained analytically.
Taking the condensate system of 41K and 87Rb as an example,
we further plot the phase diagrams of the instability in the
parameter plane. With the help of the adiabatic fidelity, the
adiabaticity of the atom–tetramer dark state is also analyzed,
and we find that that the first path has better adiabaticity and
is more effective than the second one in obtaining higher
atom–tetramer conversion efficiency. Moreover, to obtain
high atom–tetramer conversion efficiency by choosing sui-
table parameter values, we also discuss the effects of the
single-photon detuning, and the strength and width of the
Rabi pulse on the conversion efficiency.

The paper is organized as follows. In section 2, we model
the systems and derive the CPT state solution. In section 3,
we investigate the dynamical instability of the atom–tetramer
dark state, In section 4, we study the adiabatic fidelity and the
controlling effects of the external field parameters on the CPT
state. In section 5, our conclusion is presented.

2. Model and CPT state solution

With the help of ER and PA, we consider the generalized
Raman adiabatic passage to create the ultracold heteronuclear
tetramers from Bose atoms via two different reaction paths,
which can be denoted by + →A B A B3 3 (AA-path) and

+ →A B A A B2 3 (AB-path). Here, the intermediated trimers
A3 or A B2 are formed by the three-body ER. Then these
trimers, along with another atom, are photoassociated to form
heteronuclear tetramers. By denoting the atom–trimer cou-
pling strength with λ′ and detuning δ, the Rabi frequency of
the trimer–tetramer coupling optical field with Ω′ and
detuning Δ, in the interaction picture, the second quantized
Hamiltonian under the rotating frame reads,

= + +H H H Hˆ ˆ ˆ ˆ , (1)int couple0

where,

δψ ψ Δ δ ψ ψ= − + +⎡⎣ ⎤⎦ ( )Ĥ ˆ ˆ ˆ ˆ , (2)m m g g0
† †

∑χ ψ ψ ψ ψ= − ′Ĥ ˆ ˆ ˆ ˆ . (3)int

i j
ij i j j i

,

† †

For the two paths, the coupling terms are

λ ψ ψ ψ ψ

Ω ψ ψ ψ

= − ′ +

− ′ +

⎡⎣
⎤⎦



( )
( )H H c

H c

ˆ ˆ ˆ ˆ ˆ . .

ˆ ˆ ˆ . . , (4)

couple
AA

m a a a

g m b

1
†

1
†

2
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λ ψ ψ ψ ψ

Ω ψ ψ ψ

= − ′ +

− ′ +

⎡⎣
⎤⎦



( )
( )H H c

H c

ˆ ˆ ˆ ˆ ˆ . .

ˆ ˆ ˆ . . . (5)

couple
AB

m a a b

g m a

2
†

2
†

Here ψ̂i and ψ̂i
† are the annihilation and creation operators for

state 〉i| , respectively. The terms proportional to χij represent
two-body collisions, and the indices =i j a b m g, , , , stand
for the atom A, atom B, trimer and tetramer, respectively.

From the Hamiltonian we can easily derive the equations
of motion of the unit-scaled operators. Under the mean-field
approximation, i.e., ψ̂i and ψ̂i

† are replaced by c-number ψn i

and ψn i
*, where n is the density of the total particle number.

For the AA-path, the set of the mean-field Gross–Pitaevskii
(G–P) equations is (with ℏ = 1),

ψ ω ψ λ ψ ψ

ψ ω ψ Ω ψ ψ

ψ ω γ δ ψ λ ψ Ω ψ ψ

ψ ω Δ δ ψ Ω ψ ψ

= −

= +

= − − − +

= − − +( )
( )

i

i

i i

i

˙ 3 ,

˙ ,

˙ ,

˙ . (6)

a a a m a

b b b g m

m m m a g b

g g g m b

1 *2

1 *

1
3

1 *

1

For the AB-path, it becomes

ψ ω ψ λ ψ ψ Ω ψ ψ

ψ ω ψ λ ψ ψ

ψ ω γ δ ψ λ ψ ψ Ω ψ ψ

ψ ω Δ δ ψ Ω ψ ψ

= − +

= −

= − − − +

= − − +( )
( )

i

i

i i

i

˙ 2 ,

˙ ,

˙ ,

˙ . (7)

a a a b b m g

b b b m a

m m m a b a g

g g g m a

2 * * 2 *

2 *2

2
2

2 *

2

In the above two sets of equations (6) and (7),
ω χ ψ= − ∑2 | |i j ij j

2, χ χ= ′nii ii , χ χ= ′nij ij , λ λ= ′ ni i ,

Ω Ω= ′ ni i are the renormalized quantities, and the term
proportional to γ is introduced phenomenologically to simu-
late the loss of intermediate trimers, including the loss process
due to collisions. Here, to make our theoretical calculation
easy, we have not considered the losses of other channels
which also play a crucial role in experiments, but our calcu-
lations are still important to guide future efforts.

As in [51–54, 72–75], we now seek the stationary CPT
state solutions of equations (6) and (7) with ψ =| | 0m by
introducing the following stationary states:

ψ ψ

ψ ψ

ψ ψ

ψ ψ

=

=

=

=

θ μ

θ μ

θ μ

θ μ

−

−

−

−

e e

e e

e e

e e

,

,

,

, (8)

a a
i i t

b a
i i t

m m
i i t

g g
i i t

0

0

0

0

a a

b b

m m

g g

where μi are the chemical potentials for different species, and
θ θ μ μ= =3 , 3m a m a for the AA-path, while θ θ θ= +2m a b,
μ μ μ= +2g a b for the AB-path. For both the two paths,
θ θ θ= +3g a b, μ μ μ= +3g a b, and the normalized condition

are the same: ψ ψ ψ ψ+ + + =3 4 1a b m g
2 2 2 2

. Sub-

stituting equation (8) into equations (6) and (7) and using the

conservation conditions of the total particle number for dif-
ferent species of atoms A and B, we can show that the
atom–tetramer conversion system supports the following CPT
eigenstate,

ψ
Ω Ω Ω λ

λ

ψ ψ

ψ ψ

=
− + +

=

= −

k

k2
,

3 ,

1 4 , (9)

b
i i i i

i

a b

g b

0 2
2 2 2

2

0 2 0 2

0 2 0 2

where = =k i27( 1) for the AA-path and = =k i3( 2) for
the AB-path. The chemical potentials and the two-photon
resonance conditions are the same for both paths, i.e.,

μ χ ψ χ ψ χ ψ

μ χ ψ χ ψ χ ψ

Δ Δ δ χ χ χ ψ

χ χ χ ψ

χ χ χ ψ

= − + +

= − + +

= = − + + −

+ + −

+ + −

( )
( )

( )
( )
( )

2 ,

2 ,

6 6 2

6 2 2

6 2 2 . (10)

a aa a ab b ag g

b ab a bb b bg g

AA AB ag bg gg g

aa ab ag a

ab bb bg b

0 2 0 2 0 2

0 2 0 2 0 2

0 2

0 2

0 2

From equations (9) and (10), we can conclude that, by
dynamically maintaining the two-photon resonance condition,
population can be concentrated in atomic states and tetramer
bound states under the respective limits λ Ω → 0 and
λ Ω → ∞, which facilitates adiabatic coherent population
transfer between atoms and tetramers.

3. Dynamical instability of the CPT state

The existence of the CPT state can not guarantee that it
can always be followed adiabatically. In this section, we
investigate the stability properties for the heteronuclear
atom–tetramer CPT state.

As in [74, 75, 77], we make use of the linear stability
analysis through casting the nonlinear Schrödinger equation
into an effective classical Hamiltonian and analyzing the
eigenvalues of the Hamiltonian–Jacobi matrix obtained by
linearizing the equations of motion around the fixed point
which corresponds to the CPT state [79, 80]. The instability
of the fixed points depends on eigenvalues of the Hamilto-
nian–Jacobi matrix. Only pure imaginary eigenvalues corre-
spond to the stable fixed points. For this atom–tetramer
conversion system, we can obtain the eigenvalues (other than
the zero-mode frequency) of the Hamiltonian–Jacobi matrix
with an analytic expression,

η

ζ ν ση αβ

ν αβν σην α β σ η

= ± ± −

= + − −

= − − + +

±

(

i
B B C

B

C

2

2 2 2

4 2 2

1,2
2

2 2

4 2 2 2 2 2 2

3
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αβση χ β ζ ψ χ ζη ψ

χ ζν ψ χ βζη ψ ψ

χ βζν ψ ψ χ νζη ψ ψ

+ + +

+ +

+ + )

2 4 4

4 8

8 8 (11)

aa a bb b

gg g ab a b

ag a g bg b g

2 0 2 2 0 2

2 0 2 0 0

0 0 0 0

where

α β λ ψ

σ η Ω ψ

ν Ω ψ

ζ χ χ ψ

χ χ ψ

χ χ ψ δ

= − =

= = −

=

= −

+ −

+ − −( )

( )
( )

3 ,

,

,

3

3

3 (12)

AA AA
a

AA AA
g

AA
b

AA
aa am a

bb bm b

gg mg g

1
0

1
0

1
0

0 2

0 2

0 2

while

α λ ψ ψ Ω ψ

β λ ψ ψ Ω ψ

σ η λ ψ

ν Ω ψ

ζ χ χ χ ψ

= −

= − −

= − =

=

= + −( )

2 ,

2 ,

,

,

4 2 2

AB
a b g

AB
a b g

AB AB
a

AB
a

AB
aa ab am a

2
0 0

2
0

2
0 0

2
0

2
0 2

2
0

0 2

χ χ χ ψ

χ χ χ ψ δ

+ +

+ + − −( )
( )4 2 2

4 2 2 (13)

ab bb bm b

ag bg mg g

0 2

0 2

Once η ±1,2 become real or complex, the corresponding CPT
state is unstable. For the two paths, we find >B 0. Hence the
unstable regime is given by either <C 0 or >C B2. Fur-
thermore, we can see that the instability here strongly depends
on the nonlinear collisions. The typical instability diagrams
with the parameters of our interest for the AA-path and AB-
path are plotted in figures 1(a) and (b), respectively. From
these two figures, we see that there are two unstable regions
for both paths: region I and region II. Region I is thin along
the δ dimension and obtained by setting >C B2; region II
occurs at small Ω and corresponds to the unstable region
obtained by setting <C 0, whose width becomes fat with
increasing δ. We can also see that region II emerges when
δ > 4.4 or δ< <0.2 2.6 for the AA-path, while it arises once
δ > 0 for the AB-path. Therefore, the adiabatic coherent
population transfer from atoms to tetramers can be imple-
mented with a larger parameter range in the δ direction for the
AA-path. In order to obtain high conversion efficiency, it is
crucial for adiabatic evolution to avoid these unstable regimes
when designing the route of adiabatic passage.

In our calculations, we have taken 41K, 87Rb as A and B
atoms, respectively. As in [72, 73, 76], the atom–trimer
coupling strength is chosen as λ = × −s4.718 104 1, the
condensate density n is × −m5 1020 3, and the collisional
parameters are taken as χ = 0.3214aa , χ = 0.5303bb ,
χ = 0.8731ab , and other collisional parameters are 0.0938, all
in units of λ n.

Figure 1. Instability diagrams in δ Ω, space for (a) AA-path and (b) AB-path, where the black areas correspond to the unstable regions. Here
δ and Ω are in units of λ.
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4. Adiabatic fidelity and controlling effects of
external fields for the CPT state

To obtain higher atom–tetramer conversion efficiency, in this
section, we investigate the adiabaticity and controlling effects of
external fields for the dark state, taking the use of the adiabactic
fidelity [74–77], which describes the distance between the CPT
solution and the actual evolution of the nonlinear Schödinger
equations (6) and (7). From the non-U(1) symmetry of the
heteronuclear atom–tetramer conversion system, the adiabatic
fidelity of the dark state can be defined as [76, 77]

ψ=F t CPT( ) , (14)ad 2

where 〉CPT| and ψ 〉t| ( ) are respectively rescaled wavefunc-

tions of the CPT state and ψ 〉t| ( ) ψ ψ ψ ψ=( ), , ,a b m g

T
,

ψ
ψ ψ

ψ ψ

ψ ψ

ψ

ψ ψ

ψ
ψ=

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟t( ) , ,

3
, 2 (15)a b

a b

a b

a

j m

j

g

3 3

3

where j = b for the AA-path and j = a for the AB-path. If the
system can adiabatically evolve along the CPT state, then the
value of the adiabatic fidelity should be close to 1. In our
calculations, the Rabi frequency is modulated as

Ω Ω τ= tsech ( ) (16)0

where Ω0 and τ are respectively the strength and width of the
pulse. In order to describe the actual loss of intermediate trimers
in the process, we set the decay rate γ = 1, which is given in
units of λ.

Figure 2 shows the population and the adiabatic fidelity
of the CPT state as functions of time for the AA-path (left)
and AB-path (right), where the parameter δ is chosen in the
stable regions. As can be seen in figures 2(c) and (d), the
adiabatic fidelity is about 1 at the initial time, but begins to
decrease at some later time, then diminishes to the minimal
values 0.46 and 0.2 at time 113 and 122 for the AA-path and
AB-path, respectively. This implies the system initially
evolves adiabatically along the CPT state, then deviates from
the CPT state, as is shown in the population dynamics in
figures 2(a) and (b). Although the fidelity fluctuates later on,
the final values are no more than 0.75 and 0.61. In compar-
ison with the results in path AA and path AB, we conclude
that the adiabaticity of the system for the AA-path is better
than the AB-path. Therefore, the former path can result in a
higher yield of tetramers than the second one, as is shown in
figures 2(a) and (b). Moreover, once the interparticle inter-
actions are considered, the adiabatic fidelity is poor. There-
fore, the nonlinear collisions suppress the conversion from
atoms to tetramers. The above conclusions are still right for
many other sets of parameters provided that the dynamical
stability is assured. This will be shown in the following
discussions.

The dependence of the final adiabatic fidelity Fadf which
can be used to describe the conversion efficiency on the
external field parameters for the two paths is shown in
figure 3. From this figure, we see that the stable creation of
tetramers is always possible for δ < 0 no matter whether the
nonlinear collisions are included. However, once the inter-
particle interactions are included, the conversion efficiency is

Figure 2. Population (upper) and adiabatic fidelity (lower) as functions of time with δ Ω τ γ= − = = =3, 50, 20, 10 for the path AA (left)
and path AB (right). The adiabatic fidelities without the interparticle interactions are also shown in (c) and (d), respectively. Here time is in
units of λ−1 (δ Ω γ, ,0 are in units of λ). Other parameters are defined in section 3.
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near to zero for δ > 0. Moreover, as the Rabi pulse amplitude
Ω0 and width τ increase, the conversion efficiency first
increases quickly, then reaches a steady optimal value which
is close to 1. After comparing the results with and without the
two-body interactions, we find the two-body interactions
suppress the conversion of tetramers. It is clear that we can
improve the conversion efficiency by choosing the optimal
external field parameters δ, Ω0, and τ. Moreover, we can also
find that the AA-path is more favorable than the AB-path to
obtain high conversion efficiency. For example, comparing
figures 3(a) and (b), it is found that the conversion efficiency
for the AA-path is always higher than the AB-path once
Ω > 70 with the same external parameters, no matter whether
the nonlinear collisions are considered. If we compare
figures 3(c) and (d) (or figures 3(e) and (f)), we can obtain the
same conclusion on the premise that stability of the CPT state
is guaranteed. Therefore, the AA-path is more favorable than
the AB-path.

It should also be noted here that the parameter γ is chosen
as a fixed value of 1. In fact, once γ becomes larger,
its negative influence on the atom–tetramer conversion effi-
ciency will become more significant, which has not been
shown here.

5. Conclusion

In summary, we have investigated the heteronuclear mole-
cular tetramer conversion problem via a generalized Raman

adiabatic passage through two different paths, AA and AB.
The CPT state solution has been derived, and the dynamical
instability and adiabaticity of the atom–tetramer dark state
have been studied by linear stability analysis and adiabatic
fidelity, respectively. For the two paths, the unstable para-
meter regions are given analytically. And taking the 41K-87Rb
mixture condensate system as an example, we give the
unstable regions numerically. Moreover, the effects of the
external field parameters on the conversion efficiency are
studied by the adiabatic fidelity. We find that one can improve
the conversion efficiency by optimizing the single-photon
detuning, the strength and the width of the Rabi pulse. In
addition, our calculation suggests that, in most cases, the
adiabaticity of the dark state in the AA-path is better than that
in the AB-path, hence the first path is more effective than the
second one in obtaining higher atom–tetramer conversion
efficiency.
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Figure 3. Effects of the external field parameters on the conversion efficiency for the AA-path (left) and AB-path (right). The adiabatic
fidelity vs (a), (b) the detuning δ, (c), (d) the Rabi pulse strength Ω0, (e), (f) the pulse width τ. Time is in units of λ−1, other parameters are in
units of λ and are defined in section 3.
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