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Nonlinearity effects on the directed momentum current
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We investigate the quantum transport dynamics governed by the nonlinear Schrödinger equation with a
periodically-δ-kicking potential and discover the emergence of a directed current in momentum space. With the
increase of nonlinearity, we find strikingly that the momentum current decreases, reverses, and finally vanishes,
indicating that the quantum transport can be effectively manipulated through adjusting the nonlinearity. The
underlying dynamic mechanism is uncovered and some important implications are addressed.
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I. INTRODUCTION

Nonlinear quantum systems, where the dynamics is gov-
erned by nonlinear Schrödinger equations, have become
increasingly prominent in physics. They often arise in the mean
field treatment of many-body quantum systems, such as Bose-
Einstein condensates (BECs) of dilute atomic gases [1,2], and
as a possible fundamental nonlinear modification of quantum
mechanics [3]. Other applications of such modification in-
clude nonlinear light propagation [4] and Ginzburg-Landau
equations for complex order parameters in condensed-matter
physics.

The emergence of nonlinearity means that the Hamiltonian
is the functional of an instantaneous wave function, which
breaks the superposition principle of quantum mechanics [5].
The nonlinearity can dramatically alter the quantum dynamics
of tunneling [6], interference [7], and the associated quantum
phases [8]. For instance, due to the nonlinearity arising from
an atomic interaction, the quantum tunneling of the coherent
atoms in a double-well potential was found to be suppressed
or totally restrained, leading to the striking self-trapping phe-
nomenon [9,10], as was observed in recent BEC experiments
[11]. Recent studies have been extended to quantum transport
governed by nonlinear Schrödinger equations [4,12,13], where
the nonlinear effects are also prominent.

Among these studies, the directed transport of particles
with unbiased external forces [14,15] is of particular interest
as its mechanism is relevant for the construction of nanoscale
devices, such as particle separation and electron pumps,
and for the understanding of biological molecular motors
[16–19]. Cold-atom experiments have demonstrated such
striking phenomena [20]. However, the study of the nonlinear
effect on the quantum ratchet transport is in the initial stage
[21–24] and the question of how the nonlinearity affects the
quantum directed transport calls for thorough investigation
both theoretically and experimentally.

In this paper we investigate the nonlinearity effects on the
directed transport both analytically and numerically, with a
focus on the momentum current in the quantum resonance case
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of periodically driven systems. For the noninteracting case,
the momentum current may grow indefinitely and linearly
with time or oscillate around a mean value clearly different
from zero [25]. We investigate the directed transport in the
presence of both quantum resonance and nonlinearity and
find the unbounded linear growth of the momentum current
with time. More interesting is that increases in nonlinearity
can reduce, reverse, and finally stop the directed momentum
current. In the presence of nonlinearity, the wave-packet
bifurcates into two portions in momentum space. Each portion
can be well approximated by a coherent state (CS) that is
periodically revived. The temporal-spatial evolution of the
wave packet indicates a clear modification of the Talbot-type
recurrence by nonlinearity. With an increase of nonlinearity,
the CSs are squeezed into Fock states in momentum space
that impedes the directed momentum current. The system
we studied is realizable in experiments, for example, in an
ultracold-coherent-atom system (i.e., a BEC) [26–29]. We
therefore hope our theoretical results will stimulate future
experiments in the fields.

The paper is organized as follows. In Sec. II we describe
the system and show the momentum current in the presence of
nonlinearity. In Sec. III we show the wave-packet dynamics,
e.g., the formation of CSs, and its directed motion in
momentum space. In Sec. IV we present a summary.

II. DIRECTED MOMENTUM CURRENT UNDER
NONLINEARITY

The system considered here is BEC atoms confined in a ring
trap of radius R and thickness r with r � R. As the lateral
motion of the atoms is negligible, the system is essentially
one dimensional [29]. The BEC atoms experience periodic δ

kicks induced by an optical standing wave. The dynamics
of the system is described by the dimensionless nonlinear
Gross-Pitaevskii equation (� = 1)

i
∂

∂t
ψ(θ,t) =

(
−1

2

∂2

∂θ
+ K cos(θ )δT + g|ψ |2

)
ψ(θ,t),

(1)

where g = 8NaR
r2 is the scaled strength of the nonlinear

interaction, N is the number of BEC atoms, a is the s-wave
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FIG. 1. (Color online) (a) Acceleration rate R versus g for φ =
π

2 and K = 0.74. The red dash-dotted line indicates the theoretical
prediction in Eq. (2). The blue dotted line denotes the saturation level.
The inset shows the time dependence of 〈p〉. From top to bottom
g = 0 (black line), 0.4 (cyan line), 1.5 (violet line), 2 (blue line),
and 1 (red line). Time is measured in the number of kick periods
(T = 4π ). (b) Plot of R versus φ

π
for K = 0.74 with g = 0 (black

circles), 0.3 (green up triangles), 0.5 (orange diamonds), 0.6 (yellow
down triangles), 0.7 (cyan squares), 1 (red pentagrams), and 2 (blue
hexagons).

scattering length, K is the kick strength, δT = ∑
n δ(t − nT ),

and T is the period of kicks. The length and the energy are
measured in units R and �

2

mR2 , respectively. The wave function

normalization reads
∫ 2π

0 |ψ(θ )|2dθ = 1 and the boundary
condition is periodic ψ(θ,t)=ψ(θ + 2π,t).

The system has spatial and time-reversal symmetries, in
which the emergence of the directed transport requires the
rectification of kicking force that can be realized by setting
an asymmetric initial wave packet. Experimentally using the
Bragg pulse, one can prepare a superposition state of the form
ψ0(θ ) = 1√

4π
(1 + ei(φ−θ)) with a relative phase factor φ [26].

When g = 0, this quantum state can be revived exactly at a
period duration of the Talbot time (T = 4π ) [30], i.e., the
quantum resonance phenomenon [31]. In this situation, the
average momentum takes the form 〈p(t)〉 = 〈p0〉 + K

2 sin(φ)t ,
where 〈p0〉 is the initial value [26]. The average momentum is
found to grow linearly with time, indicating the emergence of
directed current in momentum space with the growth rate (or
acceleration [25]) of R = d〈p〉

dt
= K

2 sin(φ).
In order to investigate the momentum current under the

influence of nonlinearity, we solve the nonlinear Schrödinger
equation numerically using split-operator method [32]. The
inset in Fig. 1(a) shows that, for weak nonlinearity (e.g.,
g = 0.4), the linear growth rate of the momentum current
decreases compared to that in the noninteracting case. With an
increase of the nonlinearity to g = 1, the momentum current
reverses direction and its linear growth rate becomes negative.
For a higher nonlinearity of g = 1.5, the momentum current is
again in the positive direction while the acceleration becomes
very slow. At a strong nonlinearity of g = 2, the momentum
current almost vanishes. The above observations are more
clearly demonstrated in Fig. 1(a), in which the accelerations
R decreases from 0.37 (=K

2 ) to a negative value −0.13,
oscillates, and finally converges at zero after g = 3. Our
theoretical prediction of the growth rate is

R = K

2
[J0(4g) + J2(4g)] sin(φ), (2)

where J0 and J2 are zeroth and second order Bessel functions,
respectively (for details see Appendixes A–C). The results
are compared with numerical results and show a qualitative
coincidence, as shown in Fig. 1(a).

The accelerations show a strong dependence of the phase.
In Fig. 1(b) we plot the dependence of R on φ for varied g.
We see that, with the increase of nonlinearity, the amplitude
of acceleration gradually decreases and at g = 2 the R

oscillates around zero with very small amplitudes, indicating
the complete suppression of the momentum current by strong
nonlinearity. For any g, the momentum currents are found
to vanish at the phases of 0, π , and 2π , coinciding with
our theoretical prediction of Eq. (2). The physics behind
this behavior is the parity mismatch between the density
distribution and the kicking force. At φ = nπ , the density
distribution during temporal evolution maintains even parity
with respect to θ = 0, while the force that is the derivative
of the potential is an odd function. We then expect the
average force to be zero and the directed momentum current
vanishes.

The dependence of the acceleration rate on φ reveals
that the symmetry breaking between the kicking potential
and the density distribution leads to the directed current of
the BEC atoms. Such spontaneous symmetry breaking also
results in the directed motion of the soliton in the classical
Frenkel-Kontorova model [33,34]. In the traditional study of
ratchet transport, the driven potential is spatially asymmetric.
For such systems, the mechanism of the directed current of
particles is different from that of the spontaneous symmetry
breaking.

III. WAVE-PACKET DYNAMICS

To achieve insight into the mechanism of the nonlinear
momentum current, we trace the temporal evolution of the
wave packet in both the momentum and coordinate spaces.
The results are shown in Fig. 2. For g = 0, the wave packet
spreads along the positive momentum direction [Figs. 2(a)
and 2(b)], corresponding to the linear growth of the directed
current. When the nonlinearity is present (i.e., g = 0.5), the
wave packet in momentum space bifurcates into two portions
that move in opposite directions linearly as time evolves
[Fig. 2(c)] and the momentum distribution exhibits two sharp
peaks [Fig. 2(d)]. In this situation, the movement of one portion
of BEC atoms to negative momentum results in the reduction
of the momentum current. At a higher nonlinearity of g = 1.0
[Figs. 2(e) and 2(f)], the two portions of BEC atoms move in
opposite directions initially, but after tc � 100 they all move to
negative momentum, which leads to the current reversal. For
adequately strong nonlinearity, our extensive investigations
show that the wave packet always has one prominent peak
whose location does not change with time, e.g., g = 3 in
Figs. 2(g) and 2(h). In this case, the directed momentum current
vanishes.

The corresponding states in coordinate space are shown in
Fig. 3. In the noninteracting case, the periodic revival of the
quantum state, i.e., the temporal Talbot effect, can be seen
in Figs. 3(a) and 3(b). Interestingly, for weak nonlinearity,
e.g., g = 0.5 in Figs. 3(c) and 3(d), the time evolution of the
probability density distribution exhibits the periodic pattern
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FIG. 2. (Color online) Time evolution of the probability density distribution in the momentum space for g = 0 (a), 0.5 (c), 1.0 (e), and
3.0 (g). (b), (d), (f), and (h) Plots of the momentum distribution at t = 100 for g = 0, 0.5, 1.0, and 3.0, respectively. Other parameters are the
same as in Fig. 1(a).

whose period is much larger than the kick period, indicating the
modification of the Talbot-type recurrence by nonlinearity. For
much larger nonlinearity, e.g., g = 1 in Figs. 3(e) and 3(f), the
space-time evolution of the wave packet exhibits a complicated
interference pattern. For adequately strong nonlinearity, e.g.,
g = 3 in Figs. 3(g) and 3(h), the wave packet wildly spreads
in the coordinate space, corresponding to the extreme squeeze
of the quantum state in momentum space.

We further calculate the phase space distribution of
the quantum state, i.e., the Husimi distribution |〈ψ |�〉|2,
where |�〉 is a CS centered at (θc,pc), with 〈θ |�〉 =
( λc

π
)1/4 exp[− λc

2 (θ − θc)2 + ipcθ ]. Its spreading width in coor-
dinate space is 1/2λc. In our numerical implementation, we set
λc = 5. In the noninteracting case (g = 0), the quantum state

is ψ(θ,t) = ψ(θ,0)e−iKt cos(θ). The corresponding Husimi
distribution is approximated as

|〈ψ |�〉|2 ≈
(

4

λπ

)1/2

J 2
N (Kt) exp

[
− (p0 ∓ N )2

λ

]
× [1 ± sin(φ)][1 + sin(θ0)], (3)

where JN (Kt) is the Bessel function and N equals the
magnitude of its argument Kt , i.e., N ≈ Kt (for details
see Appendixes A–C). One can see that for φ = π/2, the
maximum of the quantum phase space distribution corresponds
to θ0 = π/2 and p0 = N , which is confirmed by the numerical
results in Figs. 4(a) and 4(b).

FIG. 3. (Color online) Time evolution of the probability density distribution in the coordinate space for g = 0 (a), 0.5 (c), 1.0 (e), and 3.0
(g). (b), (d), (f), and (h) Plots of the probability density distribution at t = 100 for g = 0, 0.5, 1.0, and 3.0, respectively. Other parameters are
the same as in Fig. 1(a).
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FIG. 4. (Color online) Husimi distributions |〈ψ |�〉|2 at time t = 100 (left panels) and 200 (right panels) for, from top to bottom, g = 0,
0.5, 1.0, and 3.0, respectively. Other parameters are the same as in Fig. 1(a).

For weak nonlinearity, the wave packet in the momentum
space consists of two fractions ψ(p) = ψ1(p) + ψ2(p). Our
numerical investigations show that each one has the Gaussian
configuration

ψn(p) = √
ρn exp

[
− 1

2λn

(
p − pn

0

)2 − i
(
p − pn

0

)
θn

0

]

(n = 1,2), where ρn is the probability amplitude, λn charac-
terizes the width, pn

0 and θn
0 are the centers of the Gaussian

state. The corresponding Husimi distribution is |〈ψ |�〉|2 ≈∑2
n=1 |〈ψn|�〉|2, where

|〈ψn|�〉|2 =
√

π

λc

2ρn

γn

exp

[
−

(
θc − θn

0

)2

γn

−
(
pc − pn

0

)2

λn + λc

]
,

with γn = 1
λn

+ 1
λc

(for details see Appendixes A–C). The
quantum interference between 〈ψn|�〉 is vanishingly small
due to the large distance between the two fractions, i.e.,
|p1

0 − p2
0| 	 1. Thus, the Husimi distribution consists of

two separating CSs, which is confirmed by the numerical
results in Figs. 4(c)–4(f). Detailed observations show that,
for g = 0.5 in Figs. 4(c) and 4(d), each CS is centered at a
fixed coordinate, while it moves to positive momentum for
the significant fragment or negative momentum for the small
one, respectively. For stronger nonlinearity, e.g., g = 1 in
Figs. 4(e) and 4(f), the two fragments of the Husimi distribution
are comparable and they all move to negative momentum.
They fully overlap in coordinate space, which results in the

interference pattern [see Fig. 3(e)]. For adequately strong
nonlinearity, e.g., g = 3 in Figs. 4(g) and 4(h), the Husimi
distribution is localized at a fixed momentum and spreads
wildly along the coordinate variable, indicating the formation
of the Fock state.

For a complete understanding of the dynamics of the
CSs, we numerically investigate the values of the parameters
(ρ,λ,θ0,p0) for a wild range of g and time. We numerically find
that the wave packets consist of two CSs for g smaller than a
critical value gc � 1.08 and one significant CS for g > gc [see
Figs. 2(e)–2(g)]. The insets in Figs. 5(a) and 5(b) show that, for
a specific g, both the probability amplitude ρ and the width
λ of the CSs are stable with time evolution, demonstrating
the stability of the CSs. The time-averaged value 〈ρ〉t as a
function of g is shown in Fig. 5(a), where we can see the quite
fast growth of the left CS with g. More interesting is that the
time-averaged values of 〈λ〉t rapidly decrease with the increase
of g, as shown in Fig. 5(b), which demonstrates the process of
the squeezed CSs (for details see Appendixes A–C).

The motion of the CS can be well characterized by the time
dependence of its center (θ0,p0). The inset in Fig. 5(c) shows
that, for a specific g, the θ0 of each CS is almost a constant
with time evolution. Interestingly, the time-averaged value of
〈θ0〉t of the left (right) CS gradually decreases (increases)
to π with the increase of g, and 〈θ0〉t ≈ π for g > gc, as
shown in Fig. 5(c). The center θ0 determines the driven force
〈F 〉 = K〈sin(θ )〉 that the BEC atoms experience from the
periodic kicks. Such force is negative (positive) for θ0 > π
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〉
〉

〉
〉

〉

〉
FIG. 5. (Color online) Time averaged value of the parameters (ρ,λ,θ0,p0) of the CS versus g. Arrows mark the critical nonlinearity

gc � 1.08. For g < gc, black squares (red triangles) correspond to the right (left) CSs. The insets in (a)–(c) show the time dependence of ρ, λ,
and θ0 for g = 0.6 and 1.4. The insets in (d) show p0 versus t with g = 0.6 and 1.4 (left) and the comparison of the acceleration rate R̃ (red
circles) with R (black squares) (right). Other parameters are the same as in Fig. 1(a).

(<π ) and zero for θ0 = π , which results in the move of the
CSs in different directions. This is confirmed by the numerical
results in the inset in Fig. 5(d), which displays the linear
decrease or increase of p0 for the two CSs for g = 0.6 and
the nonincrease of p0 for g = 1.4. The main plot of Fig. 5(d)
shows the acceleration rate R = limt→+∞ p0/t of each CS
for a wide range of g. We see that the acceleration rates of
the two CSs approach zero as g increases to gc, beyond which
R = 0. We assume that the acceleration rate of the momentum
current is approximated as R̃ = 〈ρ〉ltRl + 〈ρ〉rt Rl , where the
superscript r (l) denotes the right (left) CSs. The inset in
Fig. 5(d) shows that the R̃ agrees well with the acceleration
rate R of the real system, demonstrating the control of the
directed momentum current by the movement of the CSs.

IV. SUMMARY

We have investigated both numerically and analytically the
quantum resonance ratchets of periodically kicked BECs in
the presence of the nonlinearity. Our theoretical prediction
of the generation of the momentum current is in good
agreement with numerical results. Nonlinear interactions are
shown to induce the consecutive reversals of the directed
momentum current, which is different from the current reversal
in Refs. [35,36] where the growth of momentum current
saturates as time evolves. Our detailed numerical results show
that the movement of the CSs controls the directed current of
the BEC atoms. The CSs are squeezed with the increase of
the nonlinearity and turn into a Fock state in momentum space
for adequately strong nonlinearity. The results are within the
reach of the cold-atom experiments [26–29].
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APPENDIX A: DERIVATION OF THE GROWTH RATE OF
MOMENTUM CURRENT

We analytically derive the quantum state after the nonlinear
evolution of period T , i.e., ψ(T −,θ ), where the minus sign
superscript denotes the time immediately before the first
kick. It is obtained by approximately separating the nonlinear
evolution between consecutive kicks into two time intervals,
i.e., �t = T

2 . For the time evolution of the state in each
interval, we use the split operator method only one time.
Then, after the first interval the quantum state is described
as

ψ(θ,�t) = exp

(
−i

p2

2

�t

2

)
exp

[
−i

∣∣∣∣ψ̃
(

�t

2
,θ

)∣∣∣∣
2

�t

]

× exp

(
−i

p2

2

�t

2

)
ψ(θ,0),

where ψ(θ,0) = 1/
√

2π denotes the initial state and
ψ̃(�t

2 ,θ ) = exp(−i
p2

2
�t
2 )ψ(θ,0). For the quantum resonance

T = 4π , the time interval equals �t
2 = 4π 1

4 . Thus, the free
evolution in such a time interval belongs to the high-order
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quantum resonance case, i.e., T = 4π
p

q
with p = 1 and q = 4.

In the general case, i.e., T = 4π
p

q
, there is an analytical

expression for the quantum state ψ̃(T ,θ ),

ψ̃(θ,T ) =
q−1∑
n=0

Cnψ

(
θ + 2π

n

q
,0

)
,

with Cn = 1
q

∑q−1
m=0 exp(−i

2πp

q
m2 − i 2πmn

q
) [31].

By using the above equation, we can obtain the analytical
formula of ψ(θ,�t). By repeating this step for the second time
interval, we can obtain the state at the time t = T −,

ψ(θ,T −) � e−i2g exp[−iK cos(θ )]{cos[2g cos(θ )]ψ(θ,0)

+ sin[2g cos(θ )]ψ(θ + π,0)}.
According to the above expression, we can calculate the growth
rate of the momentum current and regard it as the average
acceleration, considering that the momentum current is almost
linearly growing with time. It then reads

R = K

2
[J0(4g) + J2(4g)] sin(φ), (A1)

where J0 and J2 are Bessel functions of the zeroth and the
second kind, respectively.

APPENDIX B: DERIVATION OF HUSIMI DISTRIBUTION
OF THE BEC WAVE PACKETS

1. Husimi distribution for the linear case g = 0

The Husimi distribution of the quantum state is |〈ψ |�〉|2,
where |�〉 is a CS centered at (θc,pc), with 〈θ |�〉 =
( λc

π
)1/4 exp[− λc

2 (θ − θc)2 + ipcθ ]. Its spreading width in
coordinate space is 1/2λc. In the noninteracting case,
i.e., g = 0, the quantum state is ψ(θ,t) = ψ0(θ )e−iKt cos(θ).
The corresponding inner product 〈ψ |�〉 takes the
form

〈ψ |�〉 = e−ip0θ0

(4πλc)1/4

+∞∑
n=−∞

[Jn(Kt) − ieiφJn+1(Kt)]Gn,

(B1)

where Gn = exp[− (n−p0)2

2λc
+ inθ ] and Jn(Kt) is the Bessel

function. We see that the quantum phase space distribution
exhibits the interference of the Gaussian wave packets. The
Bessel function |Jn(Kt)| is about maximum when n equals
the magnitude of its argument Kt , which we mark as N , i.e.,
|n| ≈ N , and exponentially decreases, i.e., Jn(Kt) → 0 as n

departs from N . Thus, we can safely conclude that the sum
on the right-hand of Eq. (B1) involves only the terms with
|n| = N and N − 1. In this situation, the Husimi distribution
is approximated as

|〈ψ |�〉|2 ≈
(

4

λπ

)1/2

J 2
N (Kt) exp

[
− (p0 ∓ N )2

λ

]

× [1 ± sin(φ)][1 + sin(θ0)].

One can see that for φ = π/2, the maximum of the quantum
phase space distribution corresponds to θ0 = π/2 and p0 = N ,
which is confirmed by our numerical results.

2. Husimi distribution for the nonlinear case g �= 0

Our numerical results show that, for moderate strength
of nonlinearity, the wave packets consist of two fractions
in momentum space, i.e., ψ(p) = ψ1(p) + ψ2(p) (n = 1,2).
Moreover, each fraction can be well described by the Gaussian
state [see Eq. (5)]

ψn(p) = √
ρn exp

[
− 1

2λ

(
p − pn

0

)2 − i
(
p − pn

0

)
θn

0

]
.

The inner product between |ψn〉 and the CS |�〉 is

〈ψn|�〉 =
(

π

λc

)1/4
√

2ρn

γn

exp

[
−

(
θc − θn

0

)2

2γn

−
(
pc − pn

0

)2

2(λn + λc)
+ iφn

]
,

where γn = 1
λn

+ 1
λc

and φn = (pc − pn
0 )[(1 + 1

γnλn
)θn

0 −
θc

γnλn
]. For the total wave function ψ(p) = ψ1(p) + ψ2(p), the

Husimi distribution has the expression

|〈ψ |�〉|2 =
2∑

n=1

|〈ψn|�〉|2 + 2 Re(〈ψ1|�〉∗〈ψ2|�〉),

where Re(· · · ) denotes the real part of the complex number
and reflects the quantum interference

Re(〈ψ1|�〉∗〈ψ2|�〉)

= 2

(
π

λc

)1/2
{

2∏
n=1

√
ρn

γn

exp

[
−

(
θc − θn

0

)2

2γn

−
(
pc − pn

0

)2

2(λn + λc)

]}
cos(φ1 − φ2).

On condition that |p1
0 − p2

0| 	 0, this term is nearly zero.
Thus, the Husimi distribution consists of two CSs, i.e.,
|〈ψ |�〉|2 ≈ ∑2

n=1 |〈ψn|�〉|2.

APPENDIX C: SQUEEZE OF THE CS BY THE
NONLINEARITY

For the system of the periodically kicked BEC on a ring,
the quantum state can be expanded in terms of the eigenstates
of the angular momentum operators, namely, |ψ〉 = ψn|n〉,
where p|n〉 = n|n〉. For g = 0, Eq. (1) describes the quantum
kicked rotor model. For this model, the mapping equation of
the Fourier coefficients ψn from t to (t + 1) is

ψn(t + 1) =
∑
m

(−i)n−mJn−m(k)ψm(t) exp

(
−i

T

2
m2

)
.

(C1)

Here and in the following, t is measured in the number of
periods.

For the BEC system that is described by Eq. (1), it is hard
to analytically treat the time evolution of the quantum state.
In Ref. [37] Shepelyansky introduced an approximation for
the nonlinearity, i.e., g|ψ(θ )|2 ∼ g|ψn|2/(2π ), and called this
model the kicked nonlinear rotor (KNR). For such a model,
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the mapping equation of ψn is

ψn(t + 1) =
∑
m

(−i)n−mJn−m(k)ψm(t)

× exp

(
−i

T

2
m2 − ig̃|ψn|2T

)
, (C2)

where g̃ = g/2π . In Ref. [38] Rebuzzini et al. numerically
investigated energy diffusion in quantum resonance and
found ballistic diffusion in the presence of nonlinearity,
which demonstrates that the wave-packet dynamics of the
quantum KNR mimics that of the BEC system in Eq. (1).
Taking this into account, we use the KNR model to analyze
the effect of nonlinearity on time evolution of the wave
packet. We show the mechanism of squeezing of the CSs by
nonlinearity.

In the linear case (g = 0), the wave packet is periodically
revived when the kick period is the Talbot time T = 4π . The
origin is that the phase factor of the free evolution term is
unity exp(−i4πm2/2) = 1, so free evolution has no effect on
the wave-packet motion. It is easy to see that the free evolution
for T = 4π is equal to that for T = 0. Taking this into account,
Eq. (C2) is rewritten as

ψt+1(p) = exp[−ig̃|ψt (p)|2T ]ψt (p)

= exp[−iḡ|ψt (p)|2]ψt (p), (C3)

where ḡ = 2g, and for the simplicity of the theoretical analysis,
we use the continuous variable p to replace the discrete one n.
The above equation can be further described by

ψt+1(p) = exp[−iḡ|ψt (p)|2]ψt (p)

=
{

1 +
+∞∑
n=1

1

n!
[−iḡ|ψt (p)|2]n

}
ψt (p)

= ψt (p) +
∑

n

1

n!
(−iḡ)n|ψt (p)|2nψt (p). (C4)

Our numerical investigations show that the wave packets
in momentum space can be well described by the CSs. Thus,
in the following we consider how the CSs change during the
time evolution in Eq. (C4). A CS in momentum space takes

the form (� = 1)

ψ(p) =
(

1

λπ

)1/4

exp

[
− 1

2λ
(p − p0)2 − ix0(p − p0)

]
.

(C5)

The modular square of such a wave packet is |ψ(p)|2 =
( 1
λπ

)1/2 exp[− 1
λ

(p − p0)2]. It is easy to see that |ψ(p)|2n =
( 1
λπ

)n/2 exp[− n
λ

(p − p0)2], which is also a Gaussian wave
packet. For such a state the product |ψ(p)|2nψ(p) takes the
form

|ψ(p)|2nψ(p) =
(

1

λπ

)n/2

exp

[
−n

λ
(p − p0)2

]{(
1

λπ

)1/4

× exp

[
− 1

2λ
(p − p0)2 − ix0(p − p0)

]}

=
(

1

λπ

)n/2( 1

λπ

)1/4

× exp

[
− 1

2λn

(p − p0)2 − ix0(p − p0)

]

=
(

1

λπ

)n/2(
λn

λ

)1/4

ψn(p), (C6)

where λn = λ
2n+1 , and the CS ψn(p) is

ψn(p) =
(

1

λnπ

)1/4

exp

[
− 1

2λn

(p − p0)2 − ix0(p − p0)

]
.

(C7)

Inserting Eq. (C6) into Eq. (C4) yields the time evolution of
the CS ψ(p),

ψ̃(p) = ψ(p) +
+∞∑
n=1

1

n!
(−iḡ)n

(
1

λπ

)n/2(
λn

λ

)1/4

ψn(p),

(C8)

where we use the state ψ̃(p) to replace ψt+1(p). The last
term on the right-hand side of the above equation denotes the
effect of the nonlinearity. The width of ψn(p) in momentum
space is �n

p = λn/2 = λ
2(2n+1) . Since n > 1, it is smaller than

λ/2, which is the width of ψ(p). Therefore, the CS ψn(p) is
squeezed in the presence of nonlinearity. It seems possible,
in principle, to show that ψ̃(p) is squeezed compared to
ψ(p).
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