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Directed selective tunneling of dipolar bosons in a driven triple well

Gengbiao Lu,1,2 Li-Bin Fu,1 Jie Liu,1 and Wenhua Hai3
1Institute of Applied Physics and Computational Mathematics, Beijing 100088, People’s Republic of China

2Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004, China
3Department of Physics, Hunan Normal University, Changsha 410081, People’s Republic of China

(Received 11 February 2014; published 31 March 2014)

We study the coherent control of quantum tunneling for dipolar bosons held in a driven triple-well potential.
In the high-frequency region within the resonance case, based on the non-Floquet solutions of two dipolar
bosons, the influence of dipolar interaction on tunneling is investigated analytically and numerically, in which
the directed selective-tunneling of a single atom is demonstrated when the two bosons are located in the middle
well initially. Further, the corresponding effect is exhibited numerically for more dipolar atoms N > 2 and the
directed tunneling of 1 or (N − 1) atoms occurs by adjusting the driving parameters. These results may be useful
in the design of atomic devices.
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I. INTRODUCTION

The quantum manipulation via external field has been
underway for a long time in both physics and chemistry [1].
In recent years, the coherent control of tunneling dynamics
in a driven multi-well potential has become one of the
most important subjects and attracted both theoretical [2]
and experimental interest [3,4]. The time-periodic driving
field is a powerful tool to realize the accurate control of
quantum tunneling and many interesting tunneling phenomena
have been demonstrated, such as dynamic localization (DL)
[5], photon-assisted tunneling [6–8], coherent destruction of
tunneling (CDT) [9], and selective CDT effect [10,11] of
a single particle, etc. Further, the selective CDT effect has
been extended to many-body bosons held in a double-well
potential and an interesting scheme that an arbitrarily and a
priori prescribed number of bosons are allowed to tunnel from
one well to the other has been presented by modulating the
self-interaction strength [12] or energy level unbalance [13].
In addition, the selective CDT effect was applied to realize the
directed motion of atoms in a driven 1D bipartite lattice [14,15]

Recently, the dipolar quantum gases with long-range
dipole-dipole interaction (DDI) have attracted a lot of interest
theoretically and experimentally [16,17]. Some fascinating
novel properties induced by DDI were exhibited, such as the
supersolid phase and the insulating checkerboard phase [18],
long-lived Bloch oscillations [19], etc. In recent discussions,
the triple-well potential with one-dimensional configuration,
a minimal system loaded with a dipolar gas for discussing the
effect of DDI, was studied extensively. For example, a variety
of possible ground-state phases were revealed and the dynam-
ical creation of mesoscopic quantum superpositions was dis-
cussed [20]. Because of the intersite interaction, the nonlocal
coherence was studied [21]. Depending on the strength of the
contact and dipolar interaction, the stable and unstable regions
in parameter space were depicted [22] and the role of excited
and metastable states was clarified [23]. The formation of intra-
well localization was demonstrated for a very strong dipolar
interaction [24] and the long-range macroscopic Josephson
oscillations and long-range coherent quantum transportation
were shown [25]. Furthermore, the role of anisotropy for dipo-
lar bosons [26] and entanglement entropy [27] was investigated
in a three-well with equilateral triangular configuration.

In this paper, we investigate the coherent control of quantum
tunneling for dipolar bosons held in driven triple-well with
one-dimensional configuration and we are interested in the
influence of the dipolar interaction on quantum tunneling.
For two dipolar bosons, in the high-frequency region within
resonance case, we obtain a set of analytical Floquet and
non-Floquet solutions that depend on the relation between
interaction and driving frequency. Based on the non-Floquet
superposition states, the directed selective-tunneling of a single
atom is exhibited by adjusting driving parameters, in which
all bosons are located in the middle well initially and a
good correspondence is demonstrated between analytical and
numerical results. In the nonresonance case, we show that
the directed tunneling scheme is robust in a proper reduced
dipolar-interaction region. Further, when more bosons N > 2
are considered, the directed tunneling effect of 1 or (N − 1)
bosons is found. It is shown that, for a set of proper parameters,
only a single atom is allowed to tunnel along one direction and
the atomic probabilities show a series of steps that composed
of N small oscillations. As the driving strength is adjusted to
another proper value, we find that (N − 1) bosons participate
in the tunneling process along another direction. These results
presented in our paper may be employed in the design of a
single-atom source and atomic transistor [14,15,28,29].

II. FLOQUET AND NON-FLOQUET SOLUTIONS
OF TWO DIPOLAR BOSONS

We consider the tunneling dynamics of dipolar bosons held
in a driven triple-well potential. Under the single-band tight-
binding approximation, the corresponding Hamilton reads as
[20,21,30,31]

Ĥ (t) = −�
∑
〈k,l〉

(ĉ†kĉl + ĉ
†
l ĉk) + U0

2

3∑
k=1

ĉ
†
kĉ

†
kĉk ĉk

+U1[n̂1n̂2 + n̂2n̂3] + U2n̂1n̂3 + ε(t)(ĉ†1ĉ1 − ĉ
†
3ĉ3),

(1)

where ĉ
†
k and ĉk are, respectively, the atom creation and annihi-

lation operator in the well k. � describes the nearest-neighbor
couplings and the on-site interaction between atoms is denoted
by U0. U1 is the nearest-neighbor dipole-dipole interaction and
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U2 describes the interact between nonadjacent atoms, where
the ratio of the nearest-neighbor and next- nearest-neighbor
interaction 4 � U1/U2 � 8 [20,21]. We choose the driving
field ε(t) = ε0 + ε1 cos(ωt) with ε0 being the strength of dc
field, ε1 and ω the strength and frequency of the ac field.

We have assumed that the tunneling of atoms only can occur
between these vibrational ground states for proper depths of the
three wells. Throughout this paper, � = 1 is adopted such that
ε0,ε1,ω, and � are in units of ω0 with ω0 being the reference
frequency on the order of 102 s−1[32], and time t is normalized
in units of ω−1

0 . Here a Fock basis |n1,n2,N − n1 − n2〉 is used
to describe the tunneling dynamics in the driven three-well,
with n1 atoms in the left well, n2 atoms in the middle well, and
N − n1 − n2 atoms in the right well. Here the total number of
atoms N is a constant.

First, we take into account the coherent control of tunneling
dynamics for two bosons, which is the simplest quantum
system to study the dipolar effect. Based on the Fock bases,
the corresponding quantum state �(t) of system (1) can be
expanded as

|�(t)〉 = a1(t)|2,0,0〉 + a2(t)|0,2,0〉 + a3(t)|0,0,2〉
+ a4(t)|1,1,0〉 + a5(t)|1,0,1〉 + a6(t)|0,1,1〉, (2)

where ai(t) denote the time-dependent probability amplitudes
that obey the normalization condition

∑6
i=1 |ai(t)|2 = 1. In-

serting Eqs. (1) and (2) into Schrödinger equation i ∂�(t)
∂t

=
H (t)�(t) results in the coupled equations

iȧ1 = 2ε(t)a1 + U0a1 −
√

2�a4,

iȧ2 = U0a2 −
√

2�a4 −
√

2�a6,

iȧ3 = −2ε(t)a3 + U0a3 −
√

2�a6,
(3)

iȧ4 = ε(t)a4 + U1a4 −
√

2�a1 −
√

2�a2 − �a5,

iȧ5 = U2a5 − �a4 − �a6,

iȧ6 = −ε(t)a6 + U1a6 −
√

2�a2 −
√

2�a3 − �a5.

It is difficult to obtain the exact solutions of Eq. (3),
but the coherent control of tunneling dynamics can be
investigated analytically in high-frequency approximation
ω � � and a strong interaction region [13,33]. We
introduce the functions bj (t) through the transformation

[34] a1(t) = b1(t)e−i
∫ t

0 (2ε(t ′)+U0)dt ′ , a2(t) = b2(t)e−i
∫ t

0 U0dt ′ ,
a3(t) = b3(t)ei

∫ t

0 (2ε(t ′)−U0)dt ′ , a4(t) = b4(t)e−i
∫ t

0 (ε(t ′)+U1)dt ′ ,
a5(t) = b5(t)e−i

∫ t

0 U2dt ′ , a6(t) = b6(t)ei
∫ t

0 (ε(t ′)−U1)dt ′ , where
bj (t) are slowly varying functions of time. In our work, we
set ε0 = m1ω, U0 − U1 = m2ω, U1 − U2 = m3ω + β with
reduced dipolar interaction |β| � ω

2 (m1, m2, m3 integers).
Under the high-frequency approximation, based on the Fourier
expansion e±i

∫
(ε(t)+U0−U1)dt = ∑

m′ Jm′ ( ε1
ω

)e±i(m′+m1+m2)ωt ,

e±i
∫

(ε(t)−(U0−U1))dt= ∑
m′′ Jm′′ ( ε1

ω
)e±i(m′′+m1−m2)ωt ,

e±i
∫

(ε(t)+U1−U2)dt = ∑
m′′′ Jm′′′ ( ε1

ω
)e±i(m′′′+m1+m3)ωt±iβt , and

e±i
∫

(ε(t)−(U1−U2))dt =∑
m′′′′ Jm′′′′ ( ε1

ω
)e±i(m′′′′+m1−m3)ωt∓iβt (m′,

m′′, m′′′, m′′′′ integers), the set of differential equations (3) is
transformed to

iḃ1 = −
√

2J1b4,

iḃ2 = −
√

2J2b4 −
√

2J1b6,

iḃ3 = −
√

2J2b6,
(4)

iḃ4 = −
√

2J1b1 −
√

2J2b2 − J3b5e
iβt ,

iḃ5 = −J3b4e
−iβt − J4b6e

−iβt ,

iḃ6 = −
√

2J1b2 −
√

2J2b3 − J4b5e
iβt ,

where the couplings coefficient � has been renormalized by the
effective ones J1 = �J−(m1+m2)(

ε1
ω

), J2 = �J−(m1−m2)(
ε1
ω

),
J3 = �J−(m1+m3)(

ε1
ω

), and J4 = �J−(m1−m3)(
ε1
ω

) with Jm(x)
being the m-order Bessel function of x. In the following, we
are going to focus on coherent control of tunneling dynamics
for dipolar bosons held in the driven triple-well.

A. Resonance case

When the atomic interaction is an integer multiple of the
frequency of the driving field with zero reduced interaction,
the photon resonance effect occurs [33]. Here, we consider an
analogous resonance case as the reduced dipolar interaction
β = 0, which is dependent on the difference of dipolar
interactions U1 and U2. When β = 0, Eqs. (4) are reduced
as differential equations with constant coefficient and a set of
analytical Floquet and non-Floquet solutions can be obtained
based on Eqs. (4) and the transforming relation of functions
aj (t) and bj (t) with j = 1,2, . . . ,6.

In Eqs. (4) with β = 0, we set bj = Bje
−iEt with Bj being

constants and E is the eigenvalue. Thus the analytical solution
of Eq. (1) can be constructed as �(t) = φ(t)e−iEt , where
φ(t) = B1e

−i
∫ t

0 (2ε(t ′)+U0)dt ′ |2,0,0〉 + B2e
−i

∫ t

0 U0dt ′ |0,2,0〉 +
B3e

i
∫ t

0 (2ε(t ′)−U0)dt ′ |0,0,2〉 + B4e
−i

∫ t

0 (ε(t ′)+U1)dt ′ |1,1,0〉 +
B5e

−i
∫ t

0 U2dt ′ |1,0,1〉 + B6e
i
∫ t

0 (ε(t ′)−U1)dt ′ |0,1,1〉. Inserting such
a form of bj into Eq. (4), we obtain the eigenvalue E:

E1 = E2 = 0, E3,4 = ±
√

λ − κ

2
, E5,6 = ±

√
λ + κ

2
,

(5)

where λ = 4J 2
1 + 4J 2

2 + J 2
3 + J 2

4 and κ =√
(J 2

3 + J 2
4 )2 + 16J1J2(J1J2 + J3J4). By applying the

MATHEMATICA 8.0 code to Eqs. (4), we can obtain Bj and the
correspondingly functions φ(t) can be given as

φ1,2 = ∓ξJ2J3e
−i2α(t)−iU0t |2,0,0〉 ∓ ξJ1J4e

i2α(t)−iU0t |0,0,2〉 ±
√

2ξJ1J2e
−iU2t |1,0,1〉,

φ3,4 = −J1E3M+(λ + κ)

8η
e−i2α(t)−iU0t |2,0,0〉 + E3M+ρ+

8η
e−iU0t |0,2,0〉 + J2E3M+σ+

8η
ei2α(t)−iU0t |0,0,2〉

±M+
2

e−iα(t)−iU1t |1,1,0〉 − E3M+υ+
4
√

2η
e−iU2t |1,0,1〉 ∓ M+

(
J 2

3 − J 2
4 + κ

)
4(2J1J2 + J3J4)

eiα(t)−iU1t |0,1,1〉,
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φ5,6 = −J1E5M−(λ + κ)

8η
e−i2α(t)−iU0t |2,0,0〉 + E5M−ρ−

8η
e−iU0t |0,2,0〉 + J2E5M−σ−

8η
ei2α(t)−iU0t |0,0,2〉

±M−
2

e−iα(t)−iU1t |1,1,0〉 − E5M−υ−
4
√

2η
e−iU2t |1,0,1〉 ∓ M−

( − J 2
3 + J 2

4 + κ
)

4(2J1J2 + J3J4)
eiα(t)−iU1t |0,1,1〉, (6)

where ξ = 1/
√

2J 2
1 J 2

2 + J 2
2 J 2

3 + J 2
1 J 2

4 , M± =√
2(κ ∓ J 2

3 ± J 2
4 )/κ , η = 2J 4

1 − 2J1J2J3J4 + (J 2
1 + J 2

2 )
(2J 2

2 +J 2
3 +J 2

4 ), ρ±={J2J3J4(±8J 2
1 ∓ λ−κ)+2J 3

1 (±J 2
3 ∓

J 2
4 + κ) + J1[(±J 2

3 (J 2
3 +J 2

4 ± κ) ∓4J 2
2 (J 2

2 + J 2
4 )]}/(2J1J2 +

J3J4), σ± = [±8J1J2J3J4 + 2J 2
1 (±4J 2

2 ± J 2
3 ∓ J 2

4 + κ) +
2J 2

2 (±J 2
3 ∓ J 2

4 + κ) ± J 2
3 (J 2

3 + J 2
4 ± κ)] /(2J1J2 + J3J4)

and υ± = [J1J2J3(λ ± κ − 4J 2
4 ) + J 2

2 J4(J 2
3 + J 2

4 ∓ κ) +
J 2

1 J4(−4J 2
4 + J 2

3 + J 2
4 ∓ κ)]/(2J1J2 + J3J4), and α(t) =

ε1 sin(ωt)/ω + ε0t .
From the Floquet theorem [35], we know that a Floquet

state must have the same period as the Hamiltonian (1). When
ε0, U0, U1, and U1 are integer multiple of frequency of the
driving field, we find that φ(t + T ) = φ(t) from Eqs. (6) with
T being the period of Eq. (1). The result implies that the
solution φ(t) are the Floquet states and the corresponding
eigenvalues E in Eqs. (5) are the analytical quasienergies.
It is clear that the interaction can be a non-integer multiple
of frequency of the driving field in the resonance case. In this
case, the analytical solutions in Eqs. (6) are the non-Floquet
solutions with φ(t + T ) �= φ(t). Thus, in the high-frequency
region within resonance case, we obtain a set of analytical
Floquet and non-Floquet solutions that depend on the relation
between interaction and driving frequency.

In the above-mentioned case, bj (t) = Bje
−iEt with con-

stant Bj denotes a kind of simple solutions of the driving
system. Generally, the system with β = 0 contains some
complicated periodic and quasiperiodic general solutions.
Here we consider general non-Floquet solutions obtained by a
linear superposition of the above solutions as

�(t) = �6
j=1�jφj (t)e−iEj t , (7)

where �j is superposition coefficient that depends on the
initial conditions.

In what follows, we only focus on the special superposition
state that describes the selective tunneling effect of dipolar
atoms. Note that the dipolar interaction can be adjusted
[20] and if the interaction relation U0 − U1 = U1 − U2 is
satisfied, we obtain m2 = m3, which leads to the effective
couplings J1 = J3 and J2 = J4. By choosing proper driving
parameters, there exist several roots of the Bessel function
with Jn(ε1/ω) = 0 that implies the zero effective couplings
J1 = J3 = 0 or J2 = J4 = 0.

In our whole work, it is assumed that the initial state
is |0,N,0〉, which means that all atoms are located in the
middle well initially. By adjusting the dipolar interaction
U0 − U1 = U1 − U2 and driving parameters with Jn(ε1/ω) =
0, the zero effective couplings J2 = J4 = 0 can be ob-
tained. From Eqs. (4), the results lead to the probability
function b2(t) being only related to function b6(t) and
the analytical solutions of Eqs. (4) are given as b2(t) =
cos(

√
2J1t), b6(t) = i sin(

√
2J1t), and other functions bi(t) =

0, which imply that the quantum state of the two-boson

system can be given as |�(t)〉 = cos(
√

2J1t)e−iU0t |0,2,0〉 +
i sin(

√
2J1t)ei(α−U1t)|0,1,1〉. Clearly, the state |�(t)〉 exhibits

the directed selective-tunneling effect, in which one of
two bosons oscillates periodically between the middle and
right wells.

As an example, the atomic interactions are set as U0 = 60,
U1 = 32, and U2 = 4. The driving parameters are taken as
ε0 = ω = 28 and ε1 = 2.405ω(m1 = m2 = m3 = 1). The set
of parameters leads to the effective coupling J2 = J4 = 0 and
the time evolutions of the occupation probabilities in each well
are plotted in Fig. 1(a). It is shown that the directed selective-
tunneling effect occurs, in which only a single atom is allowed
to tunnel from the initial well to right one |020〉 � |011〉. The
tunneling passage between well 1 and 2 is shut off and one
of two bosons performs a Rabi oscillation along this pathway
between wells 2 and 3 with tunneling time �t = π

2
√

2J2(2.405)
	

2.57. The analytical results (circles) are confirmed numerically
from Eq. (1), as shown by the solid lines of Fig. 1(a), and good
agreement is found between both.

In this paper, we keep all parameters as in Fig. 1(a)
except for the driving strength ε1 = 5.135ω, which leads to
the effective couplings J1 = J3 = 0. Thus, from Eqs. (4), the
tunneling dynamics of the two dipolar bosons can be described
by the quantum state |�(t)〉 = cos(

√
2J2t)e−iU0t |0,2,0〉 +

i sin(
√

2J2t)e−i(α+U1t)|1,1,0〉. The result means the occurrence
of a directed selective-tunneling of a single atom as shown
in Fig. 1(b), in which one of two bosons performs a Rabi
oscillation along another pathway between the middle and left
wells with tunneling time �t = π

2
√

2J0(5.135)
	 8.4. It can be

seen that the analytical results (circles) are in good agreement
with the numerical ones from Eqs. (1).

In the resonance case, we show that the tunneling direction
of a single boson can be manipulated by adjusting driving
parameters ε1/ω with U0 − U1 = U1 − U2 = ε0 = ω. Here
the resonance condition is dependent on the difference of
the interaction when the dipolar interaction is considered.
If the dipolar interaction is not considered, the similar
tunneling scheme only can be realized approximately in
the nonresonance case with reduced parameters γ = δ =
ω/2 [31].

B. Nonresonance case

Now we consider the nonresonance case with the reduced
dipolar interaction β �= 0. Clearly, it is difficult to obtain
the analytical solutions of Eqs. (4) as β �= 0. Here we only
pay attention to the influence of β on the directed selective-
tunneling effect numerically. As an example, we consider
the tunneling process of Fig. 1(a) for different β. The other
parameters are the same as that in Fig. 1(a) except for U2.
Based on Eq. (3), we perform the numerical calculations for
a different dipolar interaction U2 = 4.9 (β = −0.9), U2 = 7
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P
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P
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(b)
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|110〉

P
|other states〉

FIG. 1. (Color online) Time evolutions of the atomic probabilities for a different driving strength with � = 1, ω = ε0 = 28, U0 = 60,
U1 = 32, U2 = 4. The two dipolar atoms are located in the middle well initially. (a) ε1 = 2.405ω; (b) ε1 = 5.135ω. Circles indicate the
analytical results and solid lines the numerical correspondences. Here the time t = 1(ω−1

0 ) is on the order of 10−2 s.

(β = −3), and U2 = 9 (β = −5) as in Fig. 2 with Pj (t) =
|aj (t)|2 (j = 1,2, . . . ,6). We find that P2 	 | cos(

√
2J1t)|2,

P6 	 |sin(
√

2J1t)|2, and other probability functions Pj (t) 	 0
when β � 0.9. But for strong reduced dipolar interaction
β, the directed selective-tunneling process of Fig. 1(a) is
destroyed as in Figs. 2(b) and 2(c). The results imply that
the directed selective-tunneling effect is insensitive to small
reduced dipolar-interaction β.

For other parameter groups of directed selective-tunneling,
we also perform many numerical calculations by choosing β

randomly, and we also find that the directed selective-tunneling
effect is insensitive to small reduced interaction β. The result
shows that there exists a safe reduced dipolar-interaction
region and the directed tunneling scheme is robust in the region
−β0 � β � β0, which β0 is the maximal safe value. Thus,
the rigorous interaction condition of the directed selective-
tunneling effect is extended to U0 − U1 = U1 − U2 + β,
which implies that the manipulation of the interaction becomes
easier for realizing the directed selective-tunneling effect
experimentally.

III. DIRECTED SELECTIVE-TUNNELING EFFECT
IN MANY-BOSON SYSTEM

Further, we consider the coherent control of tun-
neling dynamics for more dipolar bosons N > 2 in
the driven triple-well. Fixing the relation of interaction

U0 − U1 = U1 − U2 = �U and choosing the external field
parameters ε0 = ω = �U . Based on the numerical calculation
from Eq. (1), we find that the selective tunneling between
states |0,N,0〉 and |0,N − 1,1〉 occurs when the relation
J−(N−2)(

ε1
ω

) = 0 is satisfied. This means that only one of N

dipolar bosons participates in the tunneling process along the
path between wells 2 and 3. Correspondingly, the tunneling
time between these states is �t = π

(2�
√

N )JN (x0)
, in which x0

satisfying J−(N−2)(x0) = 0.
As an example, we consider the tunneling dynamics

for N = 5. Setting U0 = 60,U1 = 32,U2 = 4, and driving
parameters ε0 = ω = 28, the ratio ε1/ω = 6.3802 leads to
Bessel function J−3( ε1

ω
) = 0 and the corresponding time

evolutions of the atomic probabilities are exhibited as shown
in Fig. 3(a). It can be seen that all probabilities Pi 	 0
except for the probabilities of states |0,5,0〉 and |0,4,1〉. The
result implies that the directed selective-tunneling occurs,
in which only one of five bosons is allowed to tunnel
from the initial well to the right one. Here the pathway
between wells 1 and 2 is shut off and only a single atom
performs Rabi oscillation along this pathway between wells
2 and 3 with tunneling time �t = π

(2�
√

5)J5(6.3802)
	 1.88. The

schematic diagram of such a directed selective-tunneling effect
is displayed by Fig. 3(c). Besides, from Fig. 3(a), we find that
the time evolution of probabilities exhibit a step as that in
Ref. [36]. Furthermore, based on many numerical experiments
for different N , we find that the platform is composed of rapid
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FIG. 2. (Color online) Time evolutions of the atomic probabilities with Pj (t) = |aj (t)|2 (j = 1,2, . . . ,6). The parameters are same as that
in Fig. 1(a) except for nonadjacent interaction U2: (a) U2 = 4.9 (β = −0.9); (b) U2 = 7 (β = −3); (c) U2 = 9 (β = −5).
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FIG. 3. (Color online) The time evolutions of the atomic probabilities are exhibited as in (a) and (b) for different driving strengths. All
dipolar atoms are located in the middle well initially and the parameters are set as N = 5, � = 1, ω = ε0 = 28, U0 = 60, U1 = 32, U2 = 4,
and in (a) ε1 = 6.3802ω; (b) ε1 = 8.7715ω. The schematic diagrams of directed selective-tunneling are shown as in (c) |0,5,0〉 → |0,4,1〉 and
(d) |0,5,0〉 → c1|1,4,0〉 + c2|2,3,0〉 + c3|3,2,0〉 + c4|4,1,0〉.

oscillations with small amplitude and the number of oscilla-
tions in every platform is consistent with the total number N

of bosons.
Adjusting the driving strength and keeping other parame-

ters, from Eq. (1) we find that when the relation J−N ( ε1
ω

) = 0
is satisfied, the selective tunneling between states |0,N,0〉
and superposition state

∑N−1
i=1 ci |i,N − i,0〉 occurs, in which

(N − 1) bosons participate in the tunneling process along the
path between wells 1 and 2. As an example, we consider
the tunneling dynamics for N = 5 and all parameters are
the same as that in Fig. 3(a) except for the driving strength
ε1 = 8.7715ω[J−5(8.7715) = 0]. The time evolutions of the
atomic probabilities are shown as in Fig. 3(b). It can be seen
that the directed selective-tunneling occurs, in which only the
pathway between wells 1 and 2 is switched on and four of five
bosons participate in the tunneling process along this tunneling
path. The corresponding schematic diagram is displayed by
Fig. 3(d).

Here by adjusting the driving strength, the directed
selective-tunneling effect of 1 or (N − 1) bosons occurs as
the corresponding relation J−(N−2)(

ε1
ω

) = 0 or J−N ( ε1
ω

) = 0
is satisfied. Note that the transistorlike effects in a triple-well
have been demonstrated [28], in which the occupation of the
middle well controls the tunneling between the outer wells.
But in our work, we exhibit another scheme that the directed
tunneling of 1 or (N − 1) bosons between the middle well
and right or left well can be manipulated by a time-dependent
driving field.

IV. SUMMARY AND DISCUSSION

In summary, we have investigated the coherent control of
quantum tunneling for dipolar bosons held in a driven triple-

well potential. In the high-frequency region within resonance
case, based on the non-Floquet solutions of two dipolar
bosons, the influence of a dipolar interaction on tunneling
has been investigated analytically and numerically. When two
bosons were located in the middle well initially, the directed
selective-tunneling of a single atom was exhibited by adjusting
driving parameters and the robustness of the directed tunneling
scheme was shown in a proper reduced dipolar-interaction
region. Further, we considered more dipolar bosons N > 2 and
the corresponding directed selective-tunneling effect has been
found. For a set of proper parameters and when the relation
J−(N−2)(

ε1
ω

) = 0 was satisfied, only a single atom was allowed
to tunnel along one direction and the atomic probabilities
show a series of steplike changes. As the driving strength was
adjusted to J−N ( ε1

ω
) = 0, the directed tunneling of (N − 1)

atoms occurs along another direction. The directed selective-
tunneling effect of dipolar bosons can be verified under
the presently accessible experimental conditions [3,4,17] and
further can also give us an insight into the tunneling dynamics
of dipolar bosons trapped in optical lattice.
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