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Virtual monopoles in a bosonic atom–diatomic-molecule system
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We investigate the virtual monopoles in an ultracold bosonic atom–diatomic-molecule system with a three-level
second-quantized model. In the quantum theory, we show that the monopole field of the ground state does not have
a spherical symmetry. We calculate the monopole charge and find that it is an integer multiple of the elementary
charge g0 = 1

2 . This multiple exactly reflects the degeneracy properties of the ground state and strongly depends
on the total particle number and the atom-number imbalance between two atomic species. In the mean-field limit,
we illustrate that the system can create continuous monopole charges in the case of heteronuclear molecules.
The underlying mechanism associated with the degeneracy properties and the application related to the quantum
phase transition of the monopoles are briefly discussed as well.

DOI: 10.1103/PhysRevA.89.023628 PACS number(s): 03.75.Hh, 03.65.Vf, 05.30.Jp, 03.65.Sq

I. INTRODUCTION

Since 1984, the geometric phase [1,2] has become an
exciting area of research due to its important applications
in the fields of high-precision quantum measurement [3],
quantum information processing [4], quantum computing
[5,6], and quantum Hall effect [7], to name a few. In quantum
mechanics, the geometric phase arises in a cyclic adiabatic
evolution, which can be expressed as a circuit integral of
the Mead-Berry connection or an integral of the Mead-Berry
curvature [8] over a surface bounded by a closed path. The
Mead-Berry connection as a vector-valued function is gauge
dependent and hence the local Mead-Berry connection can
never be physically observable. In contrast to the Mead-Berry
connection, the Mead-Berry curvature is a gauge-invariant
local manifestation of the geometric properties of the wave
functions in the parameter space, and has proven to be an
essential physical ingredient for understanding a variety of
electronic properties [9,10]. With the help of the concept of
magnetic monopole suggested by Dirac [11], one can interpret
the Mead-Berry curvature as a virtual magnetic field generated
from a monopole in the parameter space. And the total charge
of the monopole is quantized in units of 2π . The multiple of
2π is the so-called Chern number [12], which is essential for
understanding various quantization effects such as anomalous
Hall effect [13].

Recently, the field of associating ultracold atoms into
molecules has received more interest than many other fields
[14,15] because of the wide applications ranging from the
research on the BCS-BEC crossover physics [16] to the
exploration of the quantum phase transition (QPT) [17].
When both the atoms and molecules are bosons, we can
describe this kind of system by adopting a mean-field theory
in the large particle-number limit. In a mean-field treatment,
the atom-molecule systems can be modeled by a nonlinear
Schrödinger equation in which the nonlinearity arises from
the fact that two or more atoms are needed to form one
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molecule. These systems do not satisfy the superposition
principle due to the presence of nonlinearity [18] and do not
have U(1) invariance because of the nonidentical chemical
potentials for the atom and molecule [19]. For the U(1)-
invariance system, the adiabatic geometric phase was found
to be modified by the nonlinearity [20]. In order to overcome
the difficulty caused by the lack of U(1) invariance, the
geometric phase and related Mead-Berry connection have
been generalized to the atom–homonuclear-molecule systems
[21,22]. The connection between the geometric phase and
QPT in these atom–homonuclear-molecule systems have been
investigated as well [23,24]. In contrast to the homonuclear-
molecule systems, the atom–heteronuclear-molecule systems
[25] are more interesting and calls for further theoretical
considerations. This is because the heteronuclear molecules
can be either bosons or fermions, thus quantum statistics will
play important roles in such systems [26] and a large electric
dipole moment will be induced with the prospect of creating a
dipolar superfluid [27].

In this paper, we study the monopoles in a three-mode
atom-molecule boson system, which depends on three external
parameters. In the quantum theory, we calculate the monopole
field and its charge for the ground state. In particular, we
explore the effects of the particle-number imbalance between
two atomic species on the monopole field. We find that the
monopole field in this system is not spherically symmetrical
and the charge of the monopole strongly depends on the
particle-number imbalance. The corresponding mean-field
analysis is also given.

The rest of the paper is organized as follows. In Sec. II, we
introduce the second-quantized model. In Sec. III, we study
the properties of the ground-state monopole in the system. In
Sec. IV, we give a mean-field analysis. Section V presents our
discussion and conclusion.

II. THREE-MODE ATOM-MOLECULE MODEL

We adopt a three-mode model to describe an atom–
heteronuclear-molecule system. The basic assumption here is
that the spatial wave functions for three modes are fixed so that
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one can associate each mode with an annihilation operator âj

of a particle in atomic mode j = 1,2 and in molecular mode
j = m, respectively. Under this three-mode approximation,
the second-quantized Hamiltonian of the system reads (� = 1
throughout) [28]

Ĥ = �N̂m +
∑
i,j

χij

N
N̂iN̂j +

(
�eiϕ

√
N

â
†
1â

†
2âm + H.c.

)
, (1)

where N̂j = â
†
j âj . The detuning � represents the energy

difference between the molecular and atomic levels, which can
be tuned by an external field. The parameter �eiϕ specifies the
atom-molecule coupling. The parameters χij describe s-wave
scattering, taking into account the intraspecies (i = j ) and
interspecies (i �= j ) with χij = χji . It should be mentioned
that the model (1) can be mapped to a trilinear Hamiltonian
describing the nondegenerate parametric down-conversion in
quantum optics [29]. In this analogy, the molecular mode
plays the role of the pump photon, while the two atomic
modes denote the signal and idler photons, respectively. The
collisional terms would correspond to the Kerr-type cubic
nonlinearity which will be present in the optical system with
some nonlinear medium [30]. In experiments, the model
(1) may apply to the 85Rb-87Rb system where the ultracold
heteronuclear Feshbach molecules were produced starting
with a 87Rb Bose-Einstein condensate (BEC) and a cold atomic
gas of 85Rb [25]. These ultracold heteronuclear molecules
in low-lying vibrational states are of particular interest since
they could be a permanent dipole moment due to the unequal
distribution of electrons. The Hamiltonian (1) commutes with
the total atom number N and thus the N is a conserved quantity
of the system. Indeed there exists another conserved quantity,
namely, D = 〈â†

1â1〉 − 〈â†
2â2〉, which denotes the particle-

number imbalance between two atomic species. Using these
two conserved constants and neglecting the trivial constant
terms which are proportional to D or N , the Hamiltonian (1)
can be simplified as follows:

Ĥ = ZN̂m + χ

N
N̂2

m +
(

X + iY√
N

â
†
1â

†
2âm + H.c.

)
, (2)

where X + iY = �eiϕ , Z = � − (D + N )(χ11 − χ1m) −
2Nχ12 + (D − N )(χ22 − χ2m), and χ = χ11 + χ22 + χmm +
2(χ12 − χ1m − χ2m). For our atom-molecule system, the Bloch
space is expanded by the following three angular momentum

operators: L̂X = 2
√

2 â
†
1 â

†
2 âm+â

†
mâ1â2

N3/2 , L̂Y = i2
√

2 â
†
1 â

†
2 âm−â

†
mâ1â2

N3/2 ,

and L̂Z = 2â
†
mâm−â

†
1 â1−â

†
2 â2

N
. They compose a generalized Bloch

representation [31,32] and in this representation the Hamil-
tonian (2) becomes Ĥ = N

4 (Z + χ

2 )L̂Z + Nχ

16 L̂2
Z + N

4
√

2
[(X +

iY )(L̂X − iL̂Y ) + H.c.]. The corresponding parameter space
is spanned by the vector R = (X,Y,Z), which represent the
influences of an external field.

III. MONOPOLES FOR THE GROUND STATES

In the following study, we only focus on the monopoles
for the ground states. For convenience, we restrict ourselves
to the states with even N and D, where D = 0,2, . . . ,N − 2.
From the Hamiltonian (2), one can compute the ground-state
Mead-Berry curvature (i.e., virtual magnetic field) by using

FIG. 1. (Color online) Magnitude of the virtual field for the
ground state (upper panels) and the level gap between the ground state
and the first exited state (lower panels) with N = 10 and χ = Y = 0.
(a) and (a′): D = 0; (b) and (b′): D = 2; (c) and (c′): D = 4. In the
upper panels, the contours denote the rescaled quantity log10 | BN

N
|

and the values are −1.5,−1.2,−0.9,−0.6,−0.1, and 0.5 from out to
core, respectively.

the formula [2]

BN (R) = Im
∑
m�=0

〈0|∇RĤ |m〉 × 〈m|∇RĤ |0〉
(Em − E0)2

, (3)

where |0〉 denotes the quantum ground state. Em specifies
the eigenenergy of the eigenstate |m〉 and satisfies the
eigenequation Ĥ |m〉 = Em|m〉. The energy denominator in
Eq. (3) implies that the virtual magnetic field usually diverges
at the degenerate point where the energy levels cross and may
have maximum values at avoided level crossings. These level
structures are reflected in the geometry of the Hilbert space
of the system, which can be captured by the virtual magnetic
field of the ground-state monopole.

When the particle interaction is absent, i.e., χ = 0, in our
system there only exists a pointlike magnetic monopole, which
is located at the origin R = 0 in the parameter space. We
have numerically computed the virtual magnetic field of the
ground-state monopole from Eqs. (2) and (3) by using the
exact diagonalization method in double precision arithmetic
in the Fock-state representation. The results are shown in
Figs. 1(a)–1(c). We find that the virtual magnetic field is
symmetric with respect to the Z axis in our atom-molecule
system, which is different from the isotropic field generated
by a standard pointlike monopole. However, the symmetry
of the virtual field will approach spherical symmetry as
the atom-number imbalance parameter D increases. When
D = N − 2, a spherically symmetric field will be recovered.
The similarity between the upper panels and the lower panels
of Fig. 1 reveals that the properties of the virtual field are
mainly determined by the structure of the level gap between
the ground state and the first excited state.

In the presence of the particle interaction, i.e., χ �= 0,
the ground state of the system exhibits a monopole chain
that includes N−D

2 pointlike monopoles on the Z axis,
which are located at the points (X = Y = 0,Z

χ
= − n

N
) with
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FIG. 2. (Color online) Level gap between the ground state and
the first exited state with N = 10 and Y = 0. From (a) to (e), D =
0,2,4,6, and 8, respectively. The interaction parameter χ = 1 has
been used.

n = N − D − 1,N − D − 3, . . . ,1. When the particle-
number imbalance between two atomic species increases, the
number of monopoles will decrease. When D = N − 2, there
is only one monopole located at the point (X = Y = 0,Z

χ
=

− 1
N

). The level gap between the ground state and the first
excited state for this case is demonstrated in Fig. 2.

Now we calculate the charge of the monopole numerically.
According to “Gauss’s law,” the charge of the monopole can
be defined by ∮

S

BN · dS = 4πgN, (4)

where dS is the area element and S denotes any surface
boundary enclosing all monopole points. To numerically
calculate the monopole charge from Eq. (4), we first compute
the monopole field from Eqs. (2) and (3) with the exact
diagonalization method, and then choose a sphere as the closed
surface enclosing all monopoles. With increasing the radius of
the sphere, the numerical tests demonstrate good convergence
and accuracy of the results for gN . The results of the monopole
charge for χ = 0 with different total atom numbers are
demonstrated in Fig. 3. We see that the monopole charge in

FIG. 3. (Color online) Monopole charge of the ground state in the
model (2) as a function of the total particle number N with χ = 0.
For each N , the points shown from bottom to top denote the cases
D = 0,2, . . ., and N − 2, respectively. The inset shows the rescaled
charge as a function of the rescaled population imbalance between
the two atomic species.

FIG. 4. (Color online) Monopole charge of the ground state in
the model (2) as a function of the population imbalance parameter D

with χ = 1.

our system is not equal to the elementary charge g0 = 1
2 . In

the special case D = 0, the charge gN = −N
4 = −N

2 g0. In the
general case D �= 0, the charge of the monopole decreases
smoothly from −N

2 g0 to −g0 as the atom-number imbalance
between two atomic species increases. The general formula
for the monopole charge of the ground state in our system is
given by

gN = −N − D

4
= −N − D

2
g0, (5)

which is determined by the property of ( N−D
2 + 1)-fold

degeneracy of the ground states and the degenerate states
are |N+D−2m

2 ,N−D−2m
2 ,m〉 with m = 0,1, . . . ,N−D

2 . This result
implies that one can create a magnetic monopole with nonele-
mentary monopole charge in an atom–heteronuclear-molecule
system. Notice that the total charge of the monopole for the
ground state in the second-quantized model is Q = 4πgN =
−(N − D)π and the Chern number is −N−D

2 . We find that the
Chern number is also an integer in our system, which is similar
to the result shown in an interacting boson system [33].

When χ �= 0, we choose a closed surface that encloses
all N−D

2 degenerate points and the monopole charge of the
ground state for χ = 1 is obtained as shown in Fig. 4. For
D = 0, the number of the degenerate points is N

2 and the
charge is −N

4 . For D �= 0, the degenerate points reduce to
N−D

2 and the charge becomes −N−D
4 . This implies that the

result (5) obtained for χ = 0 is also appropriate for the case
χ �= 0. Obviously, the total charge of the monopoles for the
ground state is also −(N − D)π and the Chern number is also
−N−D

2 . In fact, the quantum ground state is doubly degenerate
at N−D

2 points in this case. At each degenerate point, the
two degenerate eigenstates are |N+D−n+1

2 ,N−D−n+1
2 , n−1

2 〉 and
|N+D−n−1

2 ,N−D−n−1
2 , n+1

2 〉.

IV. MEAN-FIELD ANALYSIS

In the mean-field limit, i.e., N → ∞, the atom-molecule
system becomes classical [34] and can be well described by
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the following semiclassical Hamiltonian [28,35]:

Hc = lim
N→∞

〈Ĥ 〉
N

=Z|am|2 + χ |am|4

+ [(X + iY )a∗
1a

∗
2am + c.c.], (6)

where aj are complex amplitudes for the system in the three
quantum modes and the normalized condition is given by
|a1|2 + |a2|2 + 2|am| = 1.

It is noted that the mean-field model (6) does not admit the
U(1) gauge transformation. This is an especially interesting
point about our atom-molecule system. In fact, this model is
invariant under the gauge transformation as follows:

|ψ〉 → U (φ1,φ2)|ψ〉 = ei	(φ1,φ2)|ψ〉, (7)

where

	(φ1,φ2) =
⎛
⎝φ1 0 0

0 φ2 0
0 0 φ1 + φ2

⎞
⎠ . (8)

This type of gauge transformation includes two nonidentical
phase parameters (i.e., φ1 and φ2), which is different from
the so-called skewed U(1) gauge transformation introduced in
Refs. [21,22] where the transformation only depends on one
parameter. However, we notice that the nonlinear model (6)
has a classical Hamiltonian structure (i.e., we can introduce
three pairs of conjugate variables through pj = √

ia∗
j and qj =√

iaj ). Following Refs. [22,36], for our system we can define
the Mead-Berry connection A and see its general properties
by making a gauge transformation as follows:

A = i〈ψ |∇R|ψ〉 → A′ = i〈ψ ′|∇R|ψ ′〉
= A − (|a1|2 + |a2|2 + 2|am|2)∇Rφ1

+ 1
2 [1 − (|a1|2 − |a2|2)]∇R(φ1 − φ2), (9)

where |ψ ′〉 = U (φ1,φ2)|ψ〉 and the overbar indicates an
average over all initial angles with the same actions. It is found
that the second term and the last term in Eq. (9) are trivial total
derivatives due to the conservation of the total particle number
and the constant particle-number imbalance between two
atomic species (i.e., d = |a1|2 − |a2|2). This result implies that
the Mead-Berry connection defined above is gauge invariant
under the transformation U (φ1,φ2). For an instantaneous
eigenstate, the unnecessary averaging operation can be safely
neglected. This is because the population probabilities of
different eigenstates are just the classical actions, which are
found to be the adiabatic constants in an adiabatic evolution
[37].

From the definition (9), one can calculate the mean-field
curvature B and the monopole charge g for the ground
state through B = ∇R × A and its closed surface integral,
respectively. Actually, the mean-field and quantum virtual
fields satisfy the relation limN→∞( BN

N
− B) = 0, which can

be proved from the fact that Hc is the semiclassical limit of
the second-quantized model Ĥ (for details, see Refs. [22,33])
and by following Berry’s argument about the semiclassical
connection between the Berry phase and Hannay angle [38,39].
Our numerical simulations have shown that this relation
indeed holds everywhere in the parameter space except at the

degenerate points. For the monopole charge, we have

lim
N→∞

(gN

N
− g

)
= 0, (10)

with

g = lim
N→∞

gN

N
= −1

4
(1 − d) = −1

2
(1 − d)g0, (11)

where the population-imbalance parameter d = limN→∞ D
N

.
Equation (11) implies that the ground-state monopole in our
system in the mean-field limit can carry an arbitrary charge
ranging from zero to − 1

4 (1 − d) (i.e., the discrete points in
Figs. 3 and 4 will be connected to form continuous lines).

V. DISCUSSION AND CONCLUSION

Before concluding, we present some discussion. When D =
0, our system reduces to the homonuclear molecule system. In
this case, the system exhibits a QPT from a mixture phase to a
pure molecule phase at the critical point Zc = −

√
2(X2 + Y 2)

[17]. To show the connection of the virtual field to the QPT,
we plot the contour lines of the magnitude (|BN+2| − |BN |)
for the ground state in Fig. 5. We find that the contours with
the same values for different particle numbers cross at the
phase transition point. This result is independent of the system
size, which implies that, even though a QPT is only rigorously
defined in the thermodynamic limit N → ∞, the virtual field
of the monopole does exactly mark the changes in the ground
states of the system for a finite particle-number case [23].
However, in the case of D �= 0, there is no QPT even in the
semiclassical limit [28].

In summary, we have investigated the ground-state
monopoles for a three-level atom-molecule system. Our
study mainly focuses on the virtual field and the charge

FIG. 5. (Color online) Contour lines of (|BN+2| − |BN |) for the
ground state at Y = 0 with χ = D = 0. Each set of contour lines with
same value includes the data with N = 10 (blue dash-dotted line),
N = 20 (red dashed line), and N = 30 (black solid line). Solid circles
indicate the intersection points. The inset shows the dependence of
(|BN+2| − |BN |) on the parameter Z/

√
2X with different N . The

gray straight line is plotted as a guide for the eyes with the slope
being −1.
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of the monopoles. When the particle interaction is absent,
the calculation shows that in our system there only exists
a pointlike monopole which is located at the origin in
the parameter space. However, the virtual field does not
have spherical symmetry and its structure is determined
by the atom-number imbalance parameter D. The charge
of the monopole is found to be −N−D

4 , which is not equal
to the elementary charge g0. When we consider the particle
interaction, the ground state of the system exhibits a pointlike
monopole chain with N−D

2 monopoles. The charge for each
monopole is −g0 and therefore the charge of the monopole
chain is −N−D

2 g0. Moreover, we find that the Chern number
in our system is also an integer. In the mean-field limit, our
analysis illustrates that the monopole charge can be arbitrary
ranging from − 1

4 (1 − d) to zero.
In fact, the degeneracies of the spectrum in the parameter

space are the singularities of the virtual field, and therefore
the monopoles play an important role in connection with
the geometric phase. Each degeneracy can be seen as a
charge distribution located at the contact point between energy
surfaces. Because the eigenstates are smooth and single valued
outside the degeneracies, the monopole charge is necessarily
an integer multiple of the elementary charge g0. In the generic
case of a diabolical contact [2], the monopole charges are
precisely ±g0. However, higher integer multiples of g0 may
occur [40]. For instance, for light propagating through a
twisted anisotropic dielectric medium there are experimental

situations [41] where the monopole charges are ±2g0. Our
present study provides a perfect example for higher integer
multiples of g0 in ultracold atom-molecule systems. We
emphasize that even though our results are obtained with a
specific three-level boson model. The results are expected
to hold in a general interacting atom–heteronuclear-molecule
boson system where many heteronuclear molecules in high
vibrational states will be included. The reason is that our
system is the simplest atom–heteronuclear-molecule system
in which we only consider the zero-temperature homogeneous
case so that all the bosons are condensed into zero center-
of-mass momentum states. Particularly, the monopole as the
degeneracy point in the Brillouin zone was found to play
a pivotal role in the anomalous Hall effect [13]. This fact
implies that it may be possible to observe our predicted virtual
monopole fields in experiments by setting up a bosonic Hall
system with a molecular BEC in a rotating optical lattice.
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