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High-fidelity fast quantum driving in nonlinear systems
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We investigate high-fidelity quantum driving in a nonlinear two-level system and find that nonlinear atomic
interaction can break the speed limit of the linear model. We show that repulsive atomic interaction can decrease
the minimal time requested for reaching target state even to zero, while attractive atomic interaction tends to
increase the minimal time. There exists a critical attractive interaction beyond which the target state cannot
be reached with high fidelity. Possible experimental observation of the nonlinear effects using a Bose-Einstein

condensate in an accelerating optical lattice is discussed.
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The accurate control of quantum state evolution is a
fundamental requirement in many areas of modern physics
[1], ranging from the coherent manipulation of molecular
systems [2,3] and high-precision measurements [4,5], to
the pronounced quantum information processing [6]. In the
practical implementation of quantum computing, however,
quantum decoherence is found to be a kernel obstacle
for successful quantum information processing [6—8]. One
feasible way to circumvent the dilemma is to drive quantum
state to a target state in the shortest possible time, which can
prominently minimize the decoherence effect. Nevertheless,
quantum driving protocol not only needs to be fast, but also
needs to be reliable, i.e., with a high fidelity.

Recently, following the recipe of optimal control at
quantum speed limit [9], high-fidelity superfast quantum
driving (also called the short-cut protocol [10,11]) has been
experimentally implemented by Bose-Einstein condensates
(BECs) in optical lattices [12]. The speed and fidelity of
various protocols that the system takes between given starting
and final quantum states are measured. In a race to achieve
a fidelity of 0.9, a superfast (time-minimal) composite pulse
(CP) protocol wins out as compared to the usual Landau-
Zener (LZ) adiabatic control scheme and locally adiabatic
Roland-Cerf (RC) protocol. The experimental explanation
and associated theoretical discussion are limited to a linear
two-level system, in which the interaction between atoms is
ignored. In the ultracold BEC system, since atoms are coherent,
interactions between atoms can significantly influence the
quantum driving dynamics [13].

In this paper, we report our results of superfast quantum
driving in a nonlinear two-level system, in which level energies
depend on the occupation of the levels, representing a mean-
field interaction between the coherent atoms. We show that
repulsive atomic interaction can break the speed limit of the
linear model with decreasing minimal time, while attractive
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interactions tend to increase the minimal time. In particular,
we find a critical value of the attractive interaction strength,
beyond which the minimal time becomes infinity. A possible
experimental observation of the nonlinear effects is suggested.

Model. The nonlinear system is described by the following
second-quantized two-mode model [14]:

A= ()@ a—b'h) + w(r)alh + abh + %(fﬁa —bihy,
(D

where af (a) and bt (13) denote the generators (annihilators)
for diabatic states |0) and |1), and I'(t) and w(t) are the
energy bias and coupling strength between two diabatic
states, respectively. Tt =¢/T € [0,1] is the rescaled time and
g describes the interaction strength between atoms. In this
system the total number N of particles is conserved. Under the
mean-field approximation (N — 00), the system dynamics is
given by the following nonlinear two-level model [15,16]:

2 (“ — ([T(0) + (b — |a])6: + w(r) }(“) @
latb_ T)+c al|”)]é; wtoxb,

where a and b are the probability amplitudes of diabatic state
|0) and |1), 6, and &, are Pauli matrices, and ¢ = —Ng is
the nonlinear parameter describing the atomic interaction. It is
noted that the regime ¢ < 0 describes the repulsive interaction
while the regime ¢ > 0 represents the attractive interaction in
our model. Technically, to obtain the mean-field model, we fo-
cus on the Bloch coherent states | V) = ﬁ(a&f + bb")N |vac)
(where |vac) denotes the vacuum) [17]. 'By computing the
expectation value (H) = (¥|H|V), one obtains the mean-field
Hamiltonian H = (H) /N (up to a trivial constant) in the limit
of N — oo [18]. The Hamiltonian H leads to the dynamics in
Eq. (2). The model not only has aroused great interest in theory
but also has important applications in physics; for example, for
describing a spin tunneling of nanomagnets [19], a BEC in a
double-well potential or in an optical lattice [16,20], coupled
waveguide arrays [21], etc.
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FIG. 1. (Color online) The time dependence of I' is shown for
the CP (solid line), LZ (dashed line), and RC (dotted line) protocols.

The instantaneous adiabatic eigenstates of system are
|,.(T)), where the subscripts g and e stand for the ground
state and the excited state, respectively. Assume that the system
is initially in the adiabatic ground state [,(0)) at time ¢ = 0.
The final state at time # = T is the state |{q,). Our goal is to
design a quantum control protocol [i.e., I'(t) and w(7)] that
can drive the system from the starting state |Yini) = [1/4(0))
to the final state |vg,) in the shortest possible time (i.e., T')
and with high fidelity, i.e., the final state |yg,) is as close
as possible to the adiabatic ground state |,(1)), realizing a
fidelity close to unity. Here the fidelity function Fy, as follows
can be used to measure how close the final quantum state is to
the adiabatic ground state:

Fin = (Y| Yo (D). 3)
In the linear model (¢ = 0), w is set to be constant, and
the different protocols examined in the following correspond
to different time dependence I'(tr) satisfying the bound
conditions I'(0) = =2 and I'(1) = 2 [12,22]:
0, CP

AT —1)2), LZ @)
4ao(t—1/2)

—’ RC’
A+ —16(r—1/2)?

I'(r) =

as shown in Fig. 1.

The high-fidelity quantum driving has been experimentally
implemented for a linear two-level quantum system compris-
ing BECs in optical lattices [12]. At the fast end of quantum
control, the CP protocol has been used and tested against the
linear LZ scheme and the locally adiabatic RC protocol. It
is found that an initial quantum state can be transformed
into a desired final state with high fidelity in the shortest
allowed time, reaching the quantum speed-limit bound given
by [9,12]

arccos [(Vsin|Vini) |

Ty = p . ®)

The experimentally measured minimal time for the CP pro-
tocol approaches the quantum speed limit. Fixing a threshold
value at Fj, = 0.9, To approaches the minimal time given
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FIG. 2. (Color online) The fidelity of the final state as a function
of the duration in different nonlinear interactions for (a) the CP
protocol, (b) the LZ protocol and (c) the RC protocol.

by the quantum speed limit for the parameters of the system
Tys1 = 2.75.

Nonlinear superfast quantum driving. We want to investi-
gate the superfast quantum driving in the presence of nonlinear
atomic interaction and consider how the nonlinear interaction
would affect the quantum speed limit. With the emergence
of nonlinearity, the Schrodinger equation (2) is no longer
analytically solvable. We therefore exploit a fourth to fifth-
order Runge-Kutta algorithm to trace the quantum evolution
numerically and calculate the fidelity and the minimal time to
arrive at the desired final state.

For comparison with Ref. [12], in all numerical simulations,
we take the coupling strength w = 0.5. Figure 2(a) shows
the fidelity of the final state for the CP protocol in different
nonlinear interactions. We see that the minimal time arriving to
the desired final state with high fidelity is strongly dependent
on the nonlinear interaction. For repulsive and small attractive
interaction, the fidelity oscillates between a certain value
corresponding to the initial ground state and 1. The period
of the oscillation decreases when c¢ takes larger and larger
negative values (repulsive interaction) and increases when
¢ > (Oisincreased (attractive interaction). In other words, when
¢ is increased (from ¢/w = —20 to ¢/w = 1.70) the minimal
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time increases as well and, apparently, reaches its maximal
value for c/w =~ 1.70. Interestingly, the maximal amplitude of
fidelity can stay at 1 for all the repulsive interactions, while
not always for the attractive interactions. The fidelity value 1 is
not reached for sufficiently strong attractive interaction (e.g.,
c/w = 1.72,4). More strikingly, the minimal time between
given starting and final states can tend to be zero for the strong
repulsive interaction. This means that the quantum speed limit
of the linear model breaks in the presence of nonlinearity.

We compare the CP protocol to the LZ protocol and to the
locally RC protocol for the nonlinear model. The results of
the comparison are shown in Fig. 2 for different interactions.
It is evident that the nonlinear repulsive interaction inclines
to decrease the minimal time between given starting and
final states, while the nonlinear attractive interaction tends
to increase the minimal time. The LZ protocol is more than
an order of magnitude slower than the CP pulse protocol,
whereas the RC protocol reaches the final state in a time that is
in between the CP and the LZ protocols. Similarly, the minimal
time to arrive at the final state tends to zero for the LZ and
RC protocols for the sufficiently large repulsive interaction
strength. However, the superfast quantum control with high
fidelity will no longer be achieved for the sufficiently large
attractive interaction strength.

The above studies show that the minimal time arriving to
the desired final state with high fidelity is strongly dependent
on the nonlinear interaction. We shall study the minimal time
to achieve a fidelity of Fg, = 0.9. In Fig. 3, we plot the
minimal time 7T} ¢ as a function of the nonlinear interaction. It
is clear that the minimal time to reach Fs, = 0.9 is gradually
increasing with the nonlinear interaction from repulsion to
attraction and tends to zero for the sufficiently large repulsive
nonlinear interaction while it diverges for the sufficiently
strong attractive interaction. This phenomenon can be well
understood from an analysis of the evolution behavior of
nonlinear systems. Since the RC protocol reaches the final
state in a time between that of the CP and the LZ protocols,
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FIG. 3. (Color online) The minimal time to achieve fidelity
Fs, = 0.9 as afunction of the nonlinear interaction for the CP protocol
(black circles), the LZ protocol (red squares), and the RC protocol
(blue triangles).

PHYSICAL REVIEW A 89, 012123 (2014)

here we shall analyze the evolution behavior of two extreme
cases, i.e., the CP and the LZ protocols.

For the nonlinear CP protocol, in the weak nonlinear
interaction region, Josephson oscillation will be observed, and
the period of the oscillation decreases as ¢ becomes more and
more negative (and thus the repulsive interaction increases)
while the period increases as ¢ becomes more and more
positive (i.e., the attractive interaction increases). When the
interaction is large enough, the system becomes self-trapped.
For the system with repulsive interaction, the self-trapping
emerges at the ground state while it appears in the excited state
of the system with the attractive interaction. Consequently, the
quantum speed limit of the linear model breaks in the strong
repulsive interaction, while the superfast quantum control with
high fidelity will no longer be achieved for the sufficiently large
attractive interaction.

For the nonlinear LZ protocol, in the weak nonlinear
interaction case, the LZ transition probability from the ground
state to the excited state as a function of sweeping rates
1/ T follows an exponential law, Fg, = 1 — exp(—qm Tw2/4)
[23], which reduces to the linear LZ formula when g = 1.
Here g represents the atomic-interaction-induced modifica-
tion factor, which increases (decreases) monotonically with
the nonlinear repulsive (attractive) parameters, indicating a
decreasing (increasing) transition probability. As a result,
the fidelity increases or decreases as the repulsive or at-
tractive interaction is increased, leading to the fact that
the minimal time to reach Fj, = 0.9 decreases or increases
accordingly.

For a strong nonlinear repulsive interaction, the LZ tran-
sition probability tends to zero even in the fast-speed sweep
limit. Therefore, the minimal time with high fidelity tends to
zero. However, for the sufficiently strong attractive interaction,
the LZ transition probability is a nonzero value even in
the adiabatic limit [23-25]. Similar to the CP protocol, this
implies that the high-fidelity quantum driving will no longer
be achieved when the nonlinear parameter exceeds a critical
value [see also Fig. 4(b)].

Critical atomic interaction. In order to further investigate
the critical behavior, we define a maximal fidelity Fi,,x, which
is assumed to be the maximal value of the fidelity reached
by Fn during the time evolution 7 from 0 to co. We find
that the maximal fidelity is also strongly dependent on the
nonlinear interaction. The results are summarized in Fig. 4(a).
The numerical calculations show that the value of Fp. is
maintained at 1 in repulsive and weak attractive interaction
regions and drops suddenly when attractive interaction is over
the critical point. For the LZ and the RC protocols, the critical
point is approximately at ¢/w = 1 and the maximal fidelity
slowly decreases when c¢/w > 1, which corresponds to the
appearance of a loop at the ground-state level for the nonlinear
LZ protocol, leading to a breakdown of adiabaticity [23].
However, for the CP protocol, the critical point is about ¢ /w =
1.7044 (i.e., c = 0.8522) for the parameters of our system.
When the attractive interaction is beyond the critical value,
the maximal fidelity Fp,.x drops sharply, which corresponds
to the emergence of self-trapping at the excited state of the
system. At the moment, the energy of a system described
by a classical Hamiltonian Hg(c,w) = —c(1 — 2|a|*)?/2 —
o[l — (1 —=2]al®?1"/? is smaller than — [26]. Therefore,
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FIG. 4. (Color online) The maximal fidelity and the correspond-
ing minimal time as a function of the nonlinear interaction for the
CP protocol (solid line), the LZ protocol (red dashed line), and the
RC protocol (blue dotted line). The vertical dotted line represents
the critical point of theoretical prediction of Eq. (6) for the CP
protocol. All results are for evolution time 7' € [0,1000].

we can obtain the general criterion for the occurrence of the
critical behavior, i.e., the classical Hamiltonian of the system
H.(c,w) < —w. Then the critical point is expressed as

e\ 20 —y1T—(—2a)]
o (I —2la; 2

, (6)

1)
where |a;|? is the corresponding population of the initial state.
In Fig. 4(b), we also plot the corresponding minimal time
Tmin of the maximal fidelity as a function of the nonlinear
interaction. It is noted that in both the linear LZ and RC
protocols the time to achieve complete adiabaticity; that
is, Fnax = 1, tends to infinity. Therefore, in our numerical
simulations, the values of the maximal fidelity take Fi.x ~
0.9999 (i.e., infidelity 1 — Fyay is at the 10~ level) for LZ
and RC protocols when ¢/w < 1. We also find the same critical
behavior: the high-fidelity quantum driving will no longer be
achieved when the attractive interaction strength exceeds the
critical value.

Experimental realization. The superfast quantum driving in
a nonlinear two-level system can be realized experimentally
using BECs between Bloch bands in an accelerated optical
lattice, where sufficiently high densities of the atoms and
Feshbach resonances can be achieved so that the nonlinear
effect discussed above should be readily detectable. The
mathematical model for this system can be described by
Eq. (2), where I'(r) and w(t) can be controlled through the
quasimomentum ¢ and the depth V; of the optical lattice,
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respectively. The system is initially prepared in the lowest-
energy band of the lattice with ¢ = 0 (corresponding to |¥ini)),
and the target is to reach |yg,) after an evolution of duration
T. BECs can be loaded into optical lattice potentials of the
form V = (Vy/2) cos[2mx /d; + ¢(t)] with lattice spacing dj,
and acousto-optic-modulator factor ¢(¢). The ratio c/w =
8 h*noas /(mVy) [16], where ng is the average density of
the condensate, m is the mass of the atoms, and ay is the
s-wave scattering length between atoms, determining the
nonlinearity of the system. In typical experiments [12], we
have w = 0.5 corresponding to Vy = 2Eec = 2hwyee (Wree =
2 x 3.15 kHz defines the natural units of energy Awpec
and time 1/wc), a; = £5.4 nm for rubidium [27], which
gives us ¢/w = £0.025 ~ £2.5 for np =1 x 10" m=3 ~
1 x 10*" m~3, with higher density corresponding to larger
nonlinearity c¢. Besides, Feshbach resonances can be used
to tune the nonlinear interaction ¢ from strong repulsion
to strong attraction via an external magnetic field [28].
In the experiments of Ref. [12], the parameters |c| < 0.05
and therefore the interactions are negligible [29]. However,
the small nonlinearity leads to the inconsistency between
the theories and experimental data. To observe the nonlinear
effects, we need the ratio c/w to be changed from a negative
value to a positive value. By comparing population |a;|* in
Eq. (6) with the average density value of the condensate
no, we find that the high-fidelity superfast quantum driving
cannot be achieved for rubidium with attractive interaction
when the experimental value ng > 3.41 x 10%° (corresponding
the initial-state population satisfying |a;|> > 0.676) under the
above experimental parameters. In addition, the natural units
of time is of order 10~ s for our system, which is far less
than the life time of condensates (typical value 1 to 100 s). It
is noted that the nonlinear LZ tunneling between two energy
bands of a BEC in a periodic potential has been observed
[26,30], indicating that superfast quantum driving in nonlinear
two-level systems can be realized experimentally.
Conclusions. In conclusion, we have investigated the high-
fidelity superfast quantum driving in a nonlinear two-level
system and explored the influence of atomic interactions on
high-fidelity superfast quantum driving. We have found that a
repulsive interaction between atoms inclines to decrease the
minimal time for reaching the target state even to zero for
sufficiently large interaction strength, resulting in a breakdown
of the quantum speed limit of the linear model, and the attrac-
tive interaction tends to increase the minimal time between
given starting and final states. There exists a critical value of
the interaction strength beyond which the superfast quantum
driving cannot be achieved with high fidelity. For the same
interaction value, the minimal time to achieve high fidelity in
the CP protocol is the shortest compared to the nonlinear LZ
protocol and to the nonlinear RC protocol, i.e., the CP protocol
can achieve superfast quantum driving. The optimal protocol
which allows one to implement the desired transformation
from the initial state to the final state with fidelity equal to
1 in the minimal time but does not require any adiabatic
following during the protocol. Therefore, the minimal time
T can be decreased without conflicting with the adiabatic
character of the model. Possible experimental observation
and the significant values of experimental parameters for the
nonlinear high-fidelity superfast quantum driving comprising
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BECs between Bloch bands in an accelerating optical lattice
have been suggested.
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