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Interaction effects in a quantum simulation of classical magnetism with artificial gauge potential
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We investigate the effects of atomic interaction and artificial gauge potential in a quantum simulation of
classical magnetism via ultracold bosonic atoms in triple wells. The system can be mapped into a transverse-field
spin chain with Ising interaction under a twisted boundary condition. It undergoes a phase transition from
planar to three-dimensional spin configurations, similar to the para-to-antiferromagnetic phase transition in the
transverse-field Ising model, and the artificial gauge potential can tune this phase transition. The phase diagram is
obtained, including ferromagnetic and spiral phases, similar to those simulated in Struck et al. [Struck, Ölschläger,
Targat, Soltan-Panahi, Eckardt, Lewenstein, Windpassinger, and Sengstock, Science 333, 996 (2011)].
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I. INTRODUCTION

Quantum simulation is an essential approach that employs
an easily realized and flexibly controlled quantum system
to emulate other systems of interest that may be otherwise
intractable [1,2]. Among the most widely adopted simulators is
a cold-atom system in various configurations of optical and/or
magnetic traps [3–6] because of its high degrees of cleanness
and controllability. It plays an important role in the study
of magnetism, including the antiferromagnetic Ising interac-
tion [7], frustrated quantum antiferromagnetism [8,9], itinerant
ferromagnetism [10], superexchange interaction [11,12], and
transverse-field Ising model [13–15], to name a few.

Frustrated classical magnetism has also been simulated by
ultracold atoms in an anisotropic triangular lattice [16]. With
negligible atomic interaction and homogeneous filling, the
atoms in each site serve as a classical planar spin, and a variety
of magnetic phases have been simulated [16]. However, in the
presence of interaction, atomic population imbalance may be
induced and, accordingly, the spins take three-dimensional
arrangements. Moreover, when an artificial gauge potential
is created, ultracold atoms in a closed chain of wells “feel”
a virtual magnetic field or, equivalently, one can incorporate
this external magnetic field into the boundary condition and
thus consider a field-free system under a twisted boundary
condition [17,18]. With the atomic interaction and artificial
gauge potential included, the system becomes much more
complicated, which nevertheless gives rise to some phenomena
with novel properties.

The rest of the paper is organized as follows. In Sec. II,
we introduce the triple-well model with artificial gauge
potential. We then discuss, in Sec. III, the phase transition
of the system, including the spin configurations, energy levels,
magnetization, and phase diagram, which are followed by a
conclusion in Sec. IV.

*lbfu@iapcm.ac.cn

II. MODEL

In this paper, we study ultracold bosonic atoms in triple
wells to explore the effects of the atomic interaction and artifi-
cial gauge potential. To this end, we only should make an effort
to introduce a “magnetic flux” for the atoms tunneling through
the triple wells, since our model, if without this magnetic
flux, is indeed the same as a plaquette of the triangular lattice
realized in [16]. Recently, there has been a lot of research trying
to propose and demonstrate schemes for the experimental
realization of this magnetic flux in a plaquette [19–22]. Using
these techniques, we therefore obtain a system of cold atoms in
triple wells with a magnetic flux φ when the atoms tunnel in a
plaquette. By a gauge transformation, each tunneling between
two neighboring lattice sites can take the same phase, either
φ/3 or −φ/3. In the tight-binding approximation, the system
Hamiltonian can be written as

H = −J

3∑
i=1

(a†
i aj e

iφ/3 + H.c.) + U0

2

3∑
i=1

ni(ni − 1), (1)

where j = (i + 1)mod 3 + 1 (here and below, this relation
between i and j is supposed), J denotes the tunneling
coupling, and U0 is the atomic on-site interaction. The operator
ai(a

†
i ) annihilates (creates) an atom in the ith well, ni = a

†
i ai

counts the atom number in the ith well, and the total atom
number N = ∑3

i=1 ni is conserved. The system has a periodic
boundary condition if viewed in the presence of an external
magnetic field. However, by a set of local transformations,
say, a1 → a1, a2 → a2e

iφ/3, a3 → a3e
2iφ/3, it becomes field

free but obtains a twisted boundary condition [17,18], as these
transformations can eliminate the phases (i.e., the magnetic
flux) in all of the complex tunneling couplings, except for
those transitions between the first and third wells [23] where
the phase becomes φ and which is called the twisted angle.

When the interaction is negligible and the artificial gauge
potential is absent, i.e., U0 = 0, φ = 0, the system is in a su-
perfluid state with energy E = −nJ

∑
〈i,k〉 cos(θi − θk), where

θi(k) is the local phase of atoms in the i(k)th well,
∑

〈i,k〉 denotes
summation over pairs of nearest neighbors, and homogeneous
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filling is assumed, i.e., ni = nk = n. The energy can be
rewritten as E = −nJ

∑
〈i,k〉 Si · Sk by introducing a classical

vector spin Si = [cos θi, sin θi], and thus the system can be
employed to simulate classical spin systems [16]. However, in
the presence of interaction, the above method of mapping the
system to classical planar spins is no longer feasible. In this
case, we would like to introduce the spin operators through
the Schwinger transformation, Six = 1

2 (a†
i aj + a

†
j ai), Siy =

1
2i

(a†
i aj − a

†
j ai), and Siz = 1

2 (a†
i ai − a

†
j aj ). After omitting the

trivial constants, the system Hamiltonian (1) reduces to

H = −2J

3∑
i=1

(
Six cos

φ

3
− Siy sin

φ

3

)
− 4U0

3

3∑
i=1

SizSjz.

(2)

The system can now be regarded as a chain of three large
spins subject to a transverse magnetic field B = 2J (cos φ

3 , −
sin φ

3 ,0), and the spins mutually interact antiferromagnetically
in the z-axis direction for U0 < 0 or ferromagnetically for
U0 > 0. This model in essence differs from, although it
resembles, a transverse-field Ising model (TIM) owing to lack
of the global rotational symmetry in the xy plane caused by
the twisted boundary condition. It is well known that a TIM
undergoes a second-order phase transition from paramagnetic
to (anti-)ferromagnetic states [24]. In the following, we will
show that our model undergoes a similar phase transition and
obtain some different properties as well.

For large spins, i.e., large occupation numbers in each
trap in the model (1), we can treat them well as classical
spins using the mean-field approximation. With the spins
Si represented in spherical coordinates (Si,ϑi,ϕi), i.e., Si =
Si(sin ϑi cos ϕi, sin ϑi sin ϕi, cos ϑi), the system energy is then
determined by

E =
3∑

i=1

[
−2Si sin ϑi cos(ϕi + φ/3) + 4τ

3
SiSj cos ϑi cos ϑj

]
,

(3)

under the constraints of twisted boundary conditions. Here,
ϕi = arctan(Siy/Six), τ = −U0N/J , JN (>0) is used to scale
the energy and the classical spins Si are renormalized by N .
When τ = 0 and φ/3 = lπ (here and below, l is an integer),
this model is equivalent to that in Ref. [16] with identical
tunneling couplings. If l is even (odd), the tunneling coupling
is positive (negative). For the identical tunneling coupling
considered in this paper, the same three magnetic phases can
be simulated through these two models.

III. PHASE TRANSITION

A. Spin configurations

To derive the stationary states, we just need to obtain
the fixed points (FPs) of the classical system (3) through
solving the equations ∂E/∂R = 0 under the twisted boundary
condition, where R = {S1 − S3,S2 − S1,ϕ2, − ϕ3} is a com-
plete set of variables describing the motion of the system.
In Fig. 1, we plot the energy levels and spin configurations
(SCs) in the ground states (GSs) with different spin-spin
coupling strengths. In the absence of spin-spin coupling

FIG. 1. (Color online) Mean-field energy levels and spin config-
urations (SCs) in the ground states for (a)–(d) τ = 0 and (e)–(h)
2. P1−7 denote the fixed points. ϕi shows the direction of the spin
Si in the xy-plane projection. It represents the phase difference of
atoms between two neighboring sites, other than the local phases
used in Ref. [16]. (a) Energy levels for τ = 0. (b)–(d) Planar
SCs with all of the spins aligning parallel in the xy plane,
(b) for φ ∈ (−3π, − π ), ϕi = 2π/3; (c) for φ ∈ (−π,π ), ϕi = 0;
(d) for φ ∈ (π,3π ), ϕi = −2π/3. (e) Energy levels for τ = 2.
(f)–(h) Three-dimensional SCs with S1z = −S3z �= 0 and S2z = 0 for
(f) φ = −π , (g) φ = π , and (h) φ = 3π .

(τ = 0), all three stationary states display a planar and parallel
magnetic order, in which the spins have the same magni-
tude and lie parallel in the xy plane: S1 = S2 = S3 = 1/3,
ϑ1 = ϑ2 = ϑ3 = π/2, ϕ1 = ϕ2 = ϕ3. The variable ϕi actually
characterizes the classical spins, similar to that proposed in
Ref. [16]. However, here ϕi is denoted as the phase difference
of atoms between two neighboring sites, other than the local
phases themselves used in Ref. [16]. The direction of the spins
is quantized due to the twisted boundary condition so that
there exist only three SCs with ϕi = 2π/3, 0, and −2π/3,
respectively [see Figs. 1(b)–1(d)]. These three configurations
alternatively serve as the GS, depending on the twisted angle
φ, with the energy E = −2 cos(ϕi + φ/3). Specifically, for
φ ∈ (−3π,−π ), ϕi = 2π/3 (FP P1); for φ ∈ (−π,π ), ϕi = 0
(FP P2); and for φ ∈ (π,3π ), ϕi = −2π/3 (FP P3). In this
way, the spins follow the direction of the magnetic field B as
close as possible so as to minimize the system energy.

For ferromagnetic spin-spin couplings (τ < 0), the spins
in the GS take the arrangements determined by φ just in the
same way as in the case τ = 0. However, for antiferromagnetic
spin-spin interaction (τ > 0), the magnetic order in the GS
would undergo a transition from planar and parallel to three-
dimensional arrangements. As an illustration, we show the
energy levels and SCs with τ = 2 in Figs. 1(e)–1(h). The
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system obtains four more FPs in the vicinities of φ = lπ ,
with one of them (P7) around φ = (2l + 1)π , instead of
P1,2,3, corresponding to the GS in which the spins take three-
dimensional arrangements. In these SCs, two of the spins (here,
for specification and without losing generality, we suppose
they are S1 and S3) have the same magnitude, identical xy-
plane projection, and reverse z-directional components, and
the remaining spin (S2) stays in the xy plane. Specifically, for
φ = (2l + 1)π as in Figs. 1(f)–1(h), the xy-plane projections
of S1 and S3 are parallel to the magnetic field, whereas S2 is
antiparallel to it. As φ deviates from (2l + 1)π , all of the spins
deviate from the magnetic field direction and increase their
xy-plane projections. Taking φ around π as an illustration,
as φ decreases, the xy-plane projection of S1 (S3) rotates
anticlockwise to approach the SC characterized by FP P2,
while S2 rotates clockwise; as φ increases, the spins would
rotate in the opposite directions, respectively.

B. Energy levels and magnetization

To achieve an overall view of the energy-level structures,
we show the dependence of the mean-field energy on the
parameters τ and φ in Fig. 2. The FPs of the system can
be grouped into two categories. One of them contains three
FPs, P1,2,3, denoting states with planar spins; the other group
contains four FPs appearing in the vicinities of φ = lπ [see
Figs. 2(c), 2(e), 2(g)], in which all of the spins do not remain
in the xy plane. In the latter group, the FPs appear in pair
forming loop structures in the energy levels: a pair of them
(P4,5) first appears in the vicinities of φ = 2lπ and another pair
(P6,7) appears in the vicinities of φ = (2l + 1)π . Whenever
P7 exists, it takes over the role of the GS. With τ = 2 as
an example, we can clearly see that the GS changes from
P2 to P7, corresponding to the phase transition from planar
to three-dimensional SC at φc = 2.36 [see Fig. 2(c)]. As τ

increases, the loop structures expand before they break at the
critical points, i.e., τ∗ = 13.46 for P4,5 and τ∗ = 4 for P6,7.
The FPs then exist for every single choice of φ. For quite
large interaction strengths compared to these critical values,
the energies of the FPs hardly depend on the parameter φ. As

FIG. 2. (Color online) τ and φ dependence of the energy E. For
any fixed τ , φ changes from −π to π ; in between, φ = π and τ

changes linearly to the next fixed value. If the interaction is inverted
(τ → −τ ), the energy levels would simply turn upside down and
attain a shift of 3π in φ (E → −E,φ → φ + 3π ).

FIG. 3. (Color online) Phase diagram and magnetization.
(a) Phase diagram and contour plot of the magnetization M .
The phases I and II denote planar and three-dimensional spin
configurations, respectively. (b),(c) Magnetization M as an order
parameter. The solid lines denote the mean-field results. The dots
denote the exact diagonalization results for different particle number,
N = 10,20,50,100. The vertical dashed line in (b) indicates the
transition point at τ = 0, and the horizontal one helps to show how
the magnetization changes at the vicinity of the transition point. In
phase I, M is constant against τ , while in phase II, M decreases with
increasing τ .

for fixed φ, the system also undergoes a transition as τ varies.
Particularly, for φ = (2l + 1)π [see Figs. 2(b), 2(d), 2(f)], the
emergence of FP P7 at τ = 0 indicates that the phase transition
can take place with an infinitely small antiferromagnetic
spin-spin coupling.

Based on the FP analysis above, the phase diagram can
be constructed as in Fig. 3(a). The (φ,τ )-parameter space is
divided into two regions, I and II, corresponding to the planar
and three-dimensional SCs, respectively. For nonpositive τ ,
the system in the GSs always has planar spins. When τ is
positive and small, there emerges a series of “windows” with
φ in the vicinities of (2l + 1)π , where the spin-spin coupling
can drive the spins to have three-dimensional arrangements.
As τ increases, these windows open wider and wider. On
exceeding the critical value τc|φ=2lπ = 4, the windows merge
together and the spins have three-dimensional arrangements
for all of the directions of the magnetic field in the xy plane.

In Fig. 3(a), we also plot the contours of the magnetization
M = ∑3

i=1 Si · B/|B|, which shows clearly different behav-
iors in the two parameter regions. For a given φ, when τ

is smaller than the critical value τc(φ), the spins remain in
configuration I and, consequently, the magnetization does not
vary with respect to τ ; when τ exceeds the critical value, the
spins change to configuration II, thereby gradually reducing
the magnetization as τ increases. For φ �= (2l + 1)π , the mag-
netization is discontinuous at the critical value [see Fig. 3(b)].
As φ approaches (2l + 1)π , this magnetization “gap” gradu-
ally decreases to zero. For φ = (2l + 1)π , the magnetization
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FIG. 4. (Color online) Whole phase diagram. The phase diagram
is composed of five subphases, distinguished by the angular momen-
tum L. F1 and F2 are two frustrated phases, SPS1 and SPS2 are two
spiral planar spin phases, and PS is the planar spin phase. Insets:
Numerical simulation of the time-of-flight (TOF) images by first
obtaining the GSs of the system in the trapping potential, then letting
the condensates expand freely, and, finally, recording the density
patterns after a certain time duration. (a)–(c) Configurations I with
τ = 1 and (a) φ ∈ (−3π,−π ), (b) φ ∈ (−π,π ), and (c) φ ∈ (π,3π );
(d),(e) configurations II with τ = 5 and (d) φ = −π , (e) φ = π ,
respectively.

transition becomes continuous and the magnetization begins
to decrease at τ = 0. As for fixed τ between τc|φ=(2l+1)π = 0
and τc|φ=2lπ = 4, the magnetization experiences several jumps
and falls as the SCs switch between I and II [see Fig. 3(c)]. In
Figs. 3(b) and 3(c), we also plot the exact diagonalization
result of the magnetization with several particle numbers,
N = 10,20,50, and 100. As the particle number increases, the
exact diagonalization results gradually approach those from
the mean-field methods.

C. Phase diagram

To experimentally spot different phases in Fig. 3, one
can release the atoms from the confinement and record
the time-of-flight (TOF) images. Here we plot in Fig. 4
the numerical simulation of the TOF images for several
typical parameters. For configurations I, the patterns contain
a symmetry of rotation ±2π/3 with respect to its center,
while for configurations II, the patterns apparently lose this
symmetry. In addition, it is clear that even in the same

configuration, the TOF images also bear some apparent
differences between each other, which can be quantitatively
identified by the angular moment L = −2

∑
i Siy of the atomic

condensate. For configurations I, the angular moment L is a
constant, indicating the formation of vortices in the atomic
condensates. Specifically, phase I contains three subphases
with L = −√

3 in Fig. 4(a) for the type-1 spiral planar spin
(SPS1) phase, L = 0 in Fig. 4(b) for the planar spin (PS)
phase, and L = √

3 in Fig. 4(c) for the type-2 spiral planar
spin (SPS2) phase. These three phases were also simulated in
Ref. [16]. In contrast, L in configurations II changes with τ

and φ. These states are indeed frustrated due to the interplay
between the antiferromagnetic interaction and the triangular
geometry. Similarly, phase II contains two subphases with
negative (F1) and positive (F2) angular momenta, respectively.
Thus, we derive the whole phase diagram comprising five
subphases summarized in Fig. 4.

IV. CONCLUSION

To sum up, we have investigated the ground-state properties
of ultracold bosonic atoms in triple wells, focusing, however,
on the effects of atomic interaction and artificial gauge
potential in a quantum simulation of classical magnetism.
The system undergoes a phase transition from planar spin
configurations containing the ferromagnetic phases and spiral
phases similar to those simulated in [16] to three-dimensional
configurations containing frustrated phases. All of the above
results can be demonstrated experimentally with the present
techniques. Starting from a triangular lattice, one should
superpose a ring potential to “cut” a triple-well potential, tune
the atomic interaction through Feshbach resonance, and, of
course, use a set of laser configurations [20,21] or shake the
trapping potential [22] to introduce the “magnetic flux.” For the
experiment in [16], i.e., φ = 0, the actual interaction strength
|U0| is much less than 4J , i.e., τ 	 4, and thus we can ignore
the atomic interaction and consider the spin to be planar.
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